MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df1st2 Unicode version

Theorem df1st2 6205
Description: An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df1st2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo1st 6139 . . . . . 6  |-  1st : _V -onto-> _V
2 fofn 5453 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 8 . . . . 5  |-  1st  Fn  _V
4 dffn5 5568 . . . . 5  |-  ( 1st 
Fn  _V  <->  1st  =  ( w  e.  _V  |->  ( 1st `  w ) ) )
53, 4mpbi 199 . . . 4  |-  1st  =  ( w  e.  _V  |->  ( 1st `  w ) )
6 mptv 4112 . . . 4  |-  ( w  e.  _V  |->  ( 1st `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
75, 6eqtri 2303 . . 3  |-  1st  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
87reseq1i 4951 . 2  |-  ( 1st  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )
9 resopab 4996 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 1st `  w ) ) }
10 vex 2791 . . . . 5  |-  x  e. 
_V
11 vex 2791 . . . . 5  |-  y  e. 
_V
1210, 11op1std 6130 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
1312eqeq2d 2294 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 1st `  w
)  <->  z  =  x ) )
1413dfoprab3 6176 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 1st `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  x }
158, 9, 143eqtrri 2308 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   {copab 4076    e. cmpt 4077    X. cxp 4687    |` cres 4691    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   {coprab 5859   1stc1st 6120
This theorem is referenced by:  df1stres  23243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-oprab 5862  df-1st 6122  df-2nd 6123
  Copyright terms: Public domain W3C validator