MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6509
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6508 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6507 . . 3  |-  1o  =  { (/) }
32preq2i 3723 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2316 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1632   (/)c0 3468   {csn 3653   {cpr 3654   1oc1o 6488   2oc2o 6489
This theorem is referenced by:  2dom  6949  pw2eng  6984  pwcda1  7836  canthp1lem1  8290  hashpw  11404  znidomb  16531  ssoninhaus  24959  onint1  24960  pw2f1ocnv  27233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-dif 3168  df-un 3170  df-nul 3469  df-sn 3659  df-pr 3660  df-suc 4414  df-1o 6495  df-2o 6496
  Copyright terms: Public domain W3C validator