MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6493
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6492 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6491 . . 3  |-  1o  =  { (/) }
32preq2i 3710 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2303 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1623   (/)c0 3455   {csn 3640   {cpr 3641   1oc1o 6472   2oc2o 6473
This theorem is referenced by:  2dom  6933  pw2eng  6968  pwcda1  7820  canthp1lem1  8274  hashpw  11388  znidomb  16515  ssoninhaus  24887  onint1  24888  pw2f1ocnv  27130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-un 3157  df-nul 3456  df-sn 3646  df-pr 3647  df-suc 4398  df-1o 6479  df-2o 6480
  Copyright terms: Public domain W3C validator