Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3nandALT1 Unicode version

Theorem df3nandALT1 24907
Description: The double nand expressed in terms of pure nand. (Contributed by Anthony Hart, 2-Sep-2011.)
Assertion
Ref Expression
df3nandALT1  |-  ( (
ph  -/\  ps  -/\  ch )  <->  (
ph  -/\  ( ( ps 
-/\  ch )  -/\  ( ps  -/\  ch ) ) ) )

Proof of Theorem df3nandALT1
StepHypRef Expression
1 iman 413 . . 3  |-  ( (
ph  ->  ( ( ps 
-/\  ch )  /\  ( ps  -/\  ch ) ) )  <->  -.  ( ph  /\ 
-.  ( ( ps 
-/\  ch )  /\  ( ps  -/\  ch ) ) ) )
2 imnan 411 . . . . . . . 8  |-  ( ( ps  ->  -.  ch )  <->  -.  ( ps  /\  ch ) )
32biimpi 186 . . . . . . 7  |-  ( ( ps  ->  -.  ch )  ->  -.  ( ps  /\  ch ) )
43, 3jca 518 . . . . . 6  |-  ( ( ps  ->  -.  ch )  ->  ( -.  ( ps 
/\  ch )  /\  -.  ( ps  /\  ch )
) )
52biimpri 197 . . . . . . 7  |-  ( -.  ( ps  /\  ch )  ->  ( ps  ->  -. 
ch ) )
65adantl 452 . . . . . 6  |-  ( ( -.  ( ps  /\  ch )  /\  -.  ( ps  /\  ch ) )  ->  ( ps  ->  -. 
ch ) )
74, 6impbii 180 . . . . 5  |-  ( ( ps  ->  -.  ch )  <->  ( -.  ( ps  /\  ch )  /\  -.  ( ps  /\  ch ) ) )
8 df-nan 1288 . . . . . 6  |-  ( ( ps  -/\  ch )  <->  -.  ( ps  /\  ch ) )
98, 8anbi12i 678 . . . . 5  |-  ( ( ( ps  -/\  ch )  /\  ( ps  -/\  ch )
)  <->  ( -.  ( ps  /\  ch )  /\  -.  ( ps  /\  ch ) ) )
107, 9bitr4i 243 . . . 4  |-  ( ( ps  ->  -.  ch )  <->  ( ( ps  -/\  ch )  /\  ( ps  -/\  ch )
) )
1110imbi2i 303 . . 3  |-  ( (
ph  ->  ( ps  ->  -. 
ch ) )  <->  ( ph  ->  ( ( ps  -/\  ch )  /\  ( ps 
-/\  ch ) ) ) )
12 df-nan 1288 . . . . 5  |-  ( ( ( ps  -/\  ch )  -/\  ( ps  -/\  ch )
)  <->  -.  ( ( ps  -/\  ch )  /\  ( ps  -/\  ch )
) )
1312anbi2i 675 . . . 4  |-  ( (
ph  /\  ( ( ps  -/\  ch )  -/\  ( ps  -/\  ch )
) )  <->  ( ph  /\ 
-.  ( ( ps 
-/\  ch )  /\  ( ps  -/\  ch ) ) ) )
1413notbii 287 . . 3  |-  ( -.  ( ph  /\  (
( ps  -/\  ch )  -/\  ( ps  -/\  ch )
) )  <->  -.  ( ph  /\  -.  ( ( ps  -/\  ch )  /\  ( ps  -/\  ch )
) ) )
151, 11, 143bitr4i 268 . 2  |-  ( (
ph  ->  ( ps  ->  -. 
ch ) )  <->  -.  ( ph  /\  ( ( ps 
-/\  ch )  -/\  ( ps  -/\  ch ) ) ) )
16 df-3nand 24906 . 2  |-  ( (
ph  -/\  ps  -/\  ch )  <->  (
ph  ->  ( ps  ->  -. 
ch ) ) )
17 df-nan 1288 . 2  |-  ( (
ph  -/\  ( ( ps 
-/\  ch )  -/\  ( ps  -/\  ch ) ) )  <->  -.  ( ph  /\  ( ( ps  -/\  ch )  -/\  ( ps  -/\ 
ch ) ) ) )
1815, 16, 173bitr4i 268 1  |-  ( (
ph  -/\  ps  -/\  ch )  <->  (
ph  -/\  ( ( ps 
-/\  ch )  -/\  ( ps  -/\  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    -/\ wnan 1287    -/\ w3nand 24905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288  df-3nand 24906
  Copyright terms: Public domain W3C validator