Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac1 Structured version   Unicode version

Theorem dfac1 8014
 Description: Equivalence of two versions of the Axiom of Choice ax-ac 8339. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac1 CHOICE
Distinct variable group:   ,,,

Proof of Theorem dfac1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac7 8012 . 2 CHOICE
2 aceq1 7998 . . 3
32albii 1575 . 2
41, 3bitri 241 1 CHOICE
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550  wral 2705  wrex 2706  wreu 2707  CHOICEwac 7996 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-reg 7560 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-eprel 4494  df-id 4498  df-fr 4541  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-riota 6549  df-ac 7997
 Copyright terms: Public domain W3C validator