Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Structured version   Unicode version

Theorem dfac11 27151
Description: The right-hand side of this theorem (compare with ac4 8360), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 7563, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
Distinct variable group:    x, z, f

Proof of Theorem dfac11
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8007 . . 3  |-  (CHOICE  <->  A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) )
2 raleq 2906 . . . . . 6  |-  ( a  =  x  ->  ( A. d  e.  a 
( d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) ) )
32exbidv 1637 . . . . 5  |-  ( a  =  x  ->  ( E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  <->  E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) ) )
43cbvalv 1985 . . . 4  |-  ( A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  <->  A. x E. c A. d  e.  x  ( d  =/=  (/)  ->  (
c `  d )  e.  d ) )
5 neeq1 2611 . . . . . . . . . 10  |-  ( d  =  z  ->  (
d  =/=  (/)  <->  z  =/=  (/) ) )
6 fveq2 5731 . . . . . . . . . . 11  |-  ( d  =  z  ->  (
c `  d )  =  ( c `  z ) )
7 id 21 . . . . . . . . . . 11  |-  ( d  =  z  ->  d  =  z )
86, 7eleq12d 2506 . . . . . . . . . 10  |-  ( d  =  z  ->  (
( c `  d
)  e.  d  <->  ( c `  z )  e.  z ) )
95, 8imbi12d 313 . . . . . . . . 9  |-  ( d  =  z  ->  (
( d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  ( z  =/=  (/)  ->  ( c `  z )  e.  z ) ) )
109cbvralv 2934 . . . . . . . 8  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( c `  z )  e.  z ) )
11 fveq2 5731 . . . . . . . . . . . . . . 15  |-  ( b  =  z  ->  (
c `  b )  =  ( c `  z ) )
1211sneqd 3829 . . . . . . . . . . . . . 14  |-  ( b  =  z  ->  { ( c `  b ) }  =  { ( c `  z ) } )
13 eqid 2438 . . . . . . . . . . . . . 14  |-  ( b  e.  x  |->  { ( c `  b ) } )  =  ( b  e.  x  |->  { ( c `  b
) } )
14 snex 4408 . . . . . . . . . . . . . 14  |-  { ( c `  z ) }  e.  _V
1512, 13, 14fvmpt 5809 . . . . . . . . . . . . 13  |-  ( z  e.  x  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  =  { ( c `  z ) } )
16153ad2ant1 979 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  =  { ( c `  z ) } )
17 simp3 960 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
c `  z )  e.  z )
1817snssd 3945 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  C_  z )
1914elpw 3807 . . . . . . . . . . . . . . 15  |-  ( { ( c `  z
) }  e.  ~P z 
<->  { ( c `  z ) }  C_  z )
2018, 19sylibr 205 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ~P z
)
21 snfi 7190 . . . . . . . . . . . . . . 15  |-  { ( c `  z ) }  e.  Fin
2221a1i 11 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  Fin )
23 elin 3532 . . . . . . . . . . . . . 14  |-  ( { ( c `  z
) }  e.  ( ~P z  i^i  Fin ) 
<->  ( { ( c `
 z ) }  e.  ~P z  /\  { ( c `  z
) }  e.  Fin ) )
2420, 22, 23sylanbrc 647 . . . . . . . . . . . . 13  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ( ~P z  i^i  Fin )
)
25 fvex 5745 . . . . . . . . . . . . . . 15  |-  ( c `
 z )  e. 
_V
2625snnz 3924 . . . . . . . . . . . . . 14  |-  { ( c `  z ) }  =/=  (/)
2726a1i 11 . . . . . . . . . . . . 13  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  =/=  (/) )
28 eldifsn 3929 . . . . . . . . . . . . 13  |-  ( { ( c `  z
) }  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} )  <->  ( {
( c `  z
) }  e.  ( ~P z  i^i  Fin )  /\  { ( c `
 z ) }  =/=  (/) ) )
2924, 27, 28sylanbrc 647 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ( ( ~P z  i^i  Fin )  \  { (/) } ) )
3016, 29eqeltrd 2512 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )
31303exp 1153 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
z  =/=  (/)  ->  (
( c `  z
)  e.  z  -> 
( ( b  e.  x  |->  { ( c `
 b ) } ) `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/) } ) ) ) )
3231a2d 25 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
c `  z )  e.  z )  ->  (
z  =/=  (/)  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) ) )
3332ralimia 2781 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
c `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
3410, 33sylbi 189 . . . . . . 7  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
35 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
3635mptex 5969 . . . . . . . 8  |-  ( b  e.  x  |->  { ( c `  b ) } )  e.  _V
37 fveq1 5730 . . . . . . . . . . 11  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( f `  z )  =  ( ( b  e.  x  |->  { ( c `  b ) } ) `
 z ) )
3837eleq1d 2504 . . . . . . . . . 10  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} )  <->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
3938imbi2d 309 . . . . . . . . 9  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( (
z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
4039ralbidv 2727 . . . . . . . 8  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
4136, 40spcev 3045 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
4234, 41syl 16 . . . . . 6  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
4342exlimiv 1645 . . . . 5  |-  ( E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
4443alimi 1569 . . . 4  |-  ( A. x E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
454, 44sylbi 189 . . 3  |-  ( A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
461, 45sylbi 189 . 2  |-  (CHOICE  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
47 fvex 5745 . . . . . . 7  |-  ( R1
`  ( rank `  a
) )  e.  _V
4847pwex 4385 . . . . . 6  |-  ~P ( R1 `  ( rank `  a
) )  e.  _V
49 raleq 2906 . . . . . . 7  |-  ( x  =  ~P ( R1
`  ( rank `  a
) )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  A. z  e.  ~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
5049exbidv 1637 . . . . . 6  |-  ( x  =  ~P ( R1
`  ( rank `  a
) )  ->  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  <->  E. f A. z  e.  ~P  ( R1 `  ( rank `  a ) ) ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) ) )
5148, 50spcv 3044 . . . . 5  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. f A. z  e. 
~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
52 rankon 7724 . . . . . . . 8  |-  ( rank `  a )  e.  On
5352a1i 11 . . . . . . 7  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  -> 
( rank `  a )  e.  On )
54 id 21 . . . . . . 7  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  A. z  e.  ~P  ( R1 `  ( rank `  a ) ) ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
5553, 54aomclem8 27150 . . . . . 6  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  ( R1 `  ( rank `  a ) ) )
5655exlimiv 1645 . . . . 5  |-  ( E. f A. z  e. 
~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  ( R1 `  ( rank `  a ) ) )
57 vex 2961 . . . . . 6  |-  a  e. 
_V
58 r1rankid 7788 . . . . . 6  |-  ( a  e.  _V  ->  a  C_  ( R1 `  ( rank `  a ) ) )
59 wess 4572 . . . . . . 7  |-  ( a 
C_  ( R1 `  ( rank `  a )
)  ->  ( b  We  ( R1 `  ( rank `  a ) )  ->  b  We  a
) )
6059eximdv 1633 . . . . . 6  |-  ( a 
C_  ( R1 `  ( rank `  a )
)  ->  ( E. b  b  We  ( R1 `  ( rank `  a
) )  ->  E. b 
b  We  a ) )
6157, 58, 60mp2b 10 . . . . 5  |-  ( E. b  b  We  ( R1 `  ( rank `  a
) )  ->  E. b 
b  We  a )
6251, 56, 613syl 19 . . . 4  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  a )
6362alrimiv 1642 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  A. a E. b  b  We  a )
64 dfac8 8020 . . 3  |-  (CHOICE  <->  A. a E. b  b  We  a )
6563, 64sylibr 205 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  -> CHOICE )
6646, 65impbii 182 1  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816    e. cmpt 4269    We wwe 4543   Oncon0 4584   ` cfv 5457   Fincfn 7112   R1cr1 7691   rankcrnk 7692  CHOICEwac 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-reg 7563  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-er 6908  df-map 7023  df-en 7113  df-fin 7116  df-sup 7449  df-r1 7693  df-rank 7694  df-card 7831  df-ac 8002
  Copyright terms: Public domain W3C validator