Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Unicode version

Theorem dfac11 27263
Description: The right-hand side of this theorem (compare with ac4 8118), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 7322, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
Distinct variable group:    x, z, f

Proof of Theorem dfac11
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7764 . . 3  |-  (CHOICE  <->  A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) )
2 raleq 2749 . . . . . 6  |-  ( a  =  x  ->  ( A. d  e.  a 
( d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) ) )
32exbidv 1616 . . . . 5  |-  ( a  =  x  ->  ( E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  <->  E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d ) ) )
43cbvalv 1955 . . . 4  |-  ( A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  <->  A. x E. c A. d  e.  x  ( d  =/=  (/)  ->  (
c `  d )  e.  d ) )
5 neeq1 2467 . . . . . . . . . 10  |-  ( d  =  z  ->  (
d  =/=  (/)  <->  z  =/=  (/) ) )
6 fveq2 5541 . . . . . . . . . . 11  |-  ( d  =  z  ->  (
c `  d )  =  ( c `  z ) )
7 id 19 . . . . . . . . . . 11  |-  ( d  =  z  ->  d  =  z )
86, 7eleq12d 2364 . . . . . . . . . 10  |-  ( d  =  z  ->  (
( c `  d
)  e.  d  <->  ( c `  z )  e.  z ) )
95, 8imbi12d 311 . . . . . . . . 9  |-  ( d  =  z  ->  (
( d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  ( z  =/=  (/)  ->  ( c `  z )  e.  z ) ) )
109cbvralv 2777 . . . . . . . 8  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( c `  z )  e.  z ) )
11 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( b  =  z  ->  (
c `  b )  =  ( c `  z ) )
1211sneqd 3666 . . . . . . . . . . . . . 14  |-  ( b  =  z  ->  { ( c `  b ) }  =  { ( c `  z ) } )
13 eqid 2296 . . . . . . . . . . . . . 14  |-  ( b  e.  x  |->  { ( c `  b ) } )  =  ( b  e.  x  |->  { ( c `  b
) } )
14 snex 4232 . . . . . . . . . . . . . 14  |-  { ( c `  z ) }  e.  _V
1512, 13, 14fvmpt 5618 . . . . . . . . . . . . 13  |-  ( z  e.  x  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  =  { ( c `  z ) } )
16153ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  =  { ( c `  z ) } )
17 simp3 957 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
c `  z )  e.  z )
1817snssd 3776 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  C_  z )
1914elpw 3644 . . . . . . . . . . . . . . 15  |-  ( { ( c `  z
) }  e.  ~P z 
<->  { ( c `  z ) }  C_  z )
2018, 19sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ~P z
)
21 snfi 6957 . . . . . . . . . . . . . . 15  |-  { ( c `  z ) }  e.  Fin
2221a1i 10 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  Fin )
23 elin 3371 . . . . . . . . . . . . . 14  |-  ( { ( c `  z
) }  e.  ( ~P z  i^i  Fin ) 
<->  ( { ( c `
 z ) }  e.  ~P z  /\  { ( c `  z
) }  e.  Fin ) )
2420, 22, 23sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ( ~P z  i^i  Fin )
)
25 fvex 5555 . . . . . . . . . . . . . . 15  |-  ( c `
 z )  e. 
_V
2625snnz 3757 . . . . . . . . . . . . . 14  |-  { ( c `  z ) }  =/=  (/)
2726a1i 10 . . . . . . . . . . . . 13  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  =/=  (/) )
28 eldifsn 3762 . . . . . . . . . . . . 13  |-  ( { ( c `  z
) }  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} )  <->  ( {
( c `  z
) }  e.  ( ~P z  i^i  Fin )  /\  { ( c `
 z ) }  =/=  (/) ) )
2924, 27, 28sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  { ( c `  z ) }  e.  ( ( ~P z  i^i  Fin )  \  { (/) } ) )
3016, 29eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  z  =/=  (/)  /\  ( c `
 z )  e.  z )  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )
31303exp 1150 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
z  =/=  (/)  ->  (
( c `  z
)  e.  z  -> 
( ( b  e.  x  |->  { ( c `
 b ) } ) `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/) } ) ) ) )
3231a2d 23 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
c `  z )  e.  z )  ->  (
z  =/=  (/)  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) ) )
3332ralimia 2629 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
c `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
3410, 33sylbi 187 . . . . . . 7  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
35 vex 2804 . . . . . . . . 9  |-  x  e. 
_V
3635mptex 5762 . . . . . . . 8  |-  ( b  e.  x  |->  { ( c `  b ) } )  e.  _V
37 fveq1 5540 . . . . . . . . . . 11  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( f `  z )  =  ( ( b  e.  x  |->  { ( c `  b ) } ) `
 z ) )
3837eleq1d 2362 . . . . . . . . . 10  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} )  <->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
3938imbi2d 307 . . . . . . . . 9  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( (
z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
4039ralbidv 2576 . . . . . . . 8  |-  ( f  =  ( b  e.  x  |->  { ( c `
 b ) } )  ->  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
b  e.  x  |->  { ( c `  b
) } ) `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
4136, 40spcev 2888 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( b  e.  x  |->  { ( c `  b ) } ) `
 z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
4234, 41syl 15 . . . . . 6  |-  ( A. d  e.  x  (
d  =/=  (/)  ->  (
c `  d )  e.  d )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
4342exlimiv 1624 . . . . 5  |-  ( E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
4443alimi 1549 . . . 4  |-  ( A. x E. c A. d  e.  x  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
454, 44sylbi 187 . . 3  |-  ( A. a E. c A. d  e.  a  ( d  =/=  (/)  ->  ( c `  d )  e.  d )  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
461, 45sylbi 187 . 2  |-  (CHOICE  ->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
47 fvex 5555 . . . . . . 7  |-  ( R1
`  ( rank `  a
) )  e.  _V
4847pwex 4209 . . . . . 6  |-  ~P ( R1 `  ( rank `  a
) )  e.  _V
49 raleq 2749 . . . . . . 7  |-  ( x  =  ~P ( R1
`  ( rank `  a
) )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) )  <->  A. z  e.  ~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) ) )
5049exbidv 1616 . . . . . 6  |-  ( x  =  ~P ( R1
`  ( rank `  a
) )  ->  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  <->  E. f A. z  e.  ~P  ( R1 `  ( rank `  a ) ) ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) ) )
5148, 50spcv 2887 . . . . 5  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. f A. z  e. 
~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
52 rankon 7483 . . . . . . . 8  |-  ( rank `  a )  e.  On
5352a1i 10 . . . . . . 7  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  -> 
( rank `  a )  e.  On )
54 id 19 . . . . . . 7  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  A. z  e.  ~P  ( R1 `  ( rank `  a ) ) ( z  =/=  (/)  ->  (
f `  z )  e.  ( ( ~P z  i^i  Fin )  \  { (/)
} ) ) )
5553, 54aomclem8 27262 . . . . . 6  |-  ( A. z  e.  ~P  ( R1 `  ( rank `  a
) ) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  ( R1 `  ( rank `  a ) ) )
5655exlimiv 1624 . . . . 5  |-  ( E. f A. z  e. 
~P  ( R1 `  ( rank `  a )
) ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  ( R1 `  ( rank `  a ) ) )
57 vex 2804 . . . . . 6  |-  a  e. 
_V
58 r1rankid 7547 . . . . . 6  |-  ( a  e.  _V  ->  a  C_  ( R1 `  ( rank `  a ) ) )
59 wess 4396 . . . . . . 7  |-  ( a 
C_  ( R1 `  ( rank `  a )
)  ->  ( b  We  ( R1 `  ( rank `  a ) )  ->  b  We  a
) )
6059eximdv 1612 . . . . . 6  |-  ( a 
C_  ( R1 `  ( rank `  a )
)  ->  ( E. b  b  We  ( R1 `  ( rank `  a
) )  ->  E. b 
b  We  a ) )
6157, 58, 60mp2b 9 . . . . 5  |-  ( E. b  b  We  ( R1 `  ( rank `  a
) )  ->  E. b 
b  We  a )
6251, 56, 613syl 18 . . . 4  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  E. b  b  We  a )
6362alrimiv 1621 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  ->  A. a E. b  b  We  a )
64 dfac8 7777 . . 3  |-  (CHOICE  <->  A. a E. b  b  We  a )
6563, 64sylibr 203 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) )  -> CHOICE )
6646, 65impbii 180 1  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  ( ( ~P z  i^i 
Fin )  \  { (/)
} ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653    e. cmpt 4093    We wwe 4367   Oncon0 4408   ` cfv 5271   Fincfn 6879   R1cr1 7450   rankcrnk 7451  CHOICEwac 7758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-er 6676  df-map 6790  df-en 6880  df-fin 6883  df-sup 7210  df-r1 7452  df-rank 7453  df-card 7588  df-ac 7759
  Copyright terms: Public domain W3C validator