MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Unicode version

Theorem dfac12r 7772
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 7775 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  U. ( R1 " On )  C_  dom  card )

Proof of Theorem dfac12r
Dummy variables  a 
b  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 7465 . . . 4  |-  ( y  e.  U. ( R1
" On )  <->  E. z  e.  On  y  e.  ( R1 `  suc  z
) )
2 harcl 7275 . . . . . . . . 9  |-  (har `  ( R1 `  z ) )  e.  On
3 pweq 3628 . . . . . . . . . . 11  |-  ( x  =  (har `  ( R1 `  z ) )  ->  ~P x  =  ~P (har `  ( R1 `  z ) ) )
43eleq1d 2349 . . . . . . . . . 10  |-  ( x  =  (har `  ( R1 `  z ) )  ->  ( ~P x  e.  dom  card  <->  ~P (har `  ( R1 `  z ) )  e.  dom  card )
)
54rspcv 2880 . . . . . . . . 9  |-  ( (har
`  ( R1 `  z ) )  e.  On  ->  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P (har `  ( R1 `  z ) )  e. 
dom  card ) )
62, 5ax-mp 8 . . . . . . . 8  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P (har `  ( R1 `  z ) )  e. 
dom  card )
7 cardid2 7586 . . . . . . . 8  |-  ( ~P (har `  ( R1 `  z ) )  e. 
dom  card  ->  ( card `  ~P (har `  ( R1 `  z ) ) )  ~~  ~P (har `  ( R1 `  z
) ) )
8 ensym 6910 . . . . . . . . 9  |-  ( (
card `  ~P (har `  ( R1 `  z
) ) )  ~~  ~P (har `  ( R1 `  z ) )  ->  ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) ) )
9 bren 6871 . . . . . . . . . 10  |-  ( ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) )  <->  E. f 
f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) ) )
10 simpr 447 . . . . . . . . . . . . 13  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  z  e.  On )
11 f1of1 5471 . . . . . . . . . . . . . . 15  |-  ( f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> (
card `  ~P (har `  ( R1 `  z
) ) ) )
1211adantr 451 . . . . . . . . . . . . . 14  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> (
card `  ~P (har `  ( R1 `  z
) ) ) )
13 cardon 7577 . . . . . . . . . . . . . . 15  |-  ( card `  ~P (har `  ( R1 `  z ) ) )  e.  On
1413onssi 4628 . . . . . . . . . . . . . 14  |-  ( card `  ~P (har `  ( R1 `  z ) ) )  C_  On
15 f1ss 5442 . . . . . . . . . . . . . 14  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  ( card `  ~P (har `  ( R1 `  z ) ) )  C_  On )  ->  f : ~P (har `  ( R1 `  z
) ) -1-1-> On )
1612, 14, 15sylancl 643 . . . . . . . . . . . . 13  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> On )
17 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  b  ->  ( rank `  y )  =  ( rank `  b
) )
1817oveq2d 5874 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  ( suc  U. ran  U. ran  x  .o  ( rank `  y
) )  =  ( suc  U. ran  U. ran  x  .o  ( rank `  b ) ) )
19 suceq 4457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
rank `  y )  =  ( rank `  b
)  ->  suc  ( rank `  y )  =  suc  ( rank `  b )
)
2017, 19syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  b  ->  suc  ( rank `  y )  =  suc  ( rank `  b
) )
2120fveq2d 5529 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  b  ->  (
x `  suc  ( rank `  y ) )  =  ( x `  suc  ( rank `  b )
) )
22 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  b  ->  y  =  b )
2321, 22fveq12d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  (
( x `  suc  ( rank `  y )
) `  y )  =  ( ( x `
 suc  ( rank `  b ) ) `  b ) )
2418, 23oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  b  ->  (
( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) )  =  ( ( suc  U. ran  U.
ran  x  .o  ( rank `  b ) )  +o  ( ( x `
 suc  ( rank `  b ) ) `  b ) ) )
25 imaeq2 5008 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y )  =  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " b
) )
2625fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  b  ->  (
f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) )  =  ( f `  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) )
2724, 26ifeq12d 3581 . . . . . . . . . . . . . . . . 17  |-  ( y  =  b  ->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) )  =  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b
) )  +o  (
( x `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) ) )
2827cbvmptv 4111 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) )  =  ( b  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) ) )
29 dmeq 4879 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  dom  x  =  dom  a )
3029fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( R1 `  dom  x )  =  ( R1 `  dom  a ) )
3129unieqd 3838 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  U. dom  x  =  U. dom  a
)
3229, 31eqeq12d 2297 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( dom  x  =  U. dom  x 
<->  dom  a  =  U. dom  a ) )
33 rneq 4904 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  a  ->  ran  x  =  ran  a )
3433unieqd 3838 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  a  ->  U. ran  x  =  U. ran  a
)
3534rneqd 4906 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  ran  U.
ran  x  =  ran  U.
ran  a )
3635unieqd 3838 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  ->  U. ran  U.
ran  x  =  U. ran  U. ran  a )
37 suceq 4457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( U. ran  U. ran  x  = 
U. ran  U. ran  a  ->  suc  U. ran  U. ran  x  =  suc  U. ran  U. ran  a )
3836, 37syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  suc  U.
ran  U. ran  x  =  suc  U. ran  U. ran  a )
3938oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( suc  U. ran  U. ran  x  .o  ( rank `  b
) )  =  ( suc  U. ran  U. ran  a  .o  ( rank `  b ) ) )
40 fveq1 5524 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  (
x `  suc  ( rank `  b ) )  =  ( a `  suc  ( rank `  b )
) )
4140fveq1d 5527 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
( x `  suc  ( rank `  b )
) `  b )  =  ( ( a `
 suc  ( rank `  b ) ) `  b ) )
4239, 41oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) )  =  ( ( suc  U. ran  U.
ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) )
43 id 19 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  a  ->  x  =  a )
4443, 31fveq12d 5531 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  a  ->  (
x `  U. dom  x
)  =  ( a `
 U. dom  a
) )
4544rneqd 4906 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  a  ->  ran  ( x `  U. dom  x )  =  ran  ( a `  U. dom  a ) )
46 oieq2 7228 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ran  ( x `  U. dom  x )  =  ran  ( a `  U. dom  a )  -> OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  = OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) ) )
4745, 46syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  -> OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  = OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) ) )
4847cnveqd 4857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  ->  `'OrdIso (  _E  ,  ran  (
x `  U. dom  x
) )  =  `'OrdIso (  _E  ,  ran  (
a `  U. dom  a
) ) )
4948, 44coeq12d 4848 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) )  =  ( `'OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) )  o.  (
a `  U. dom  a
) ) )
5049imaeq1d 5011 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b )  =  ( ( `'OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) )  o.  (
a `  U. dom  a
) ) " b
) )
5150fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) )  =  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) )
5232, 42, 51ifbieq12d 3587 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) )  =  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) )
5330, 52mpteq12dv 4098 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
b  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b )
)  +o  ( ( x `  suc  ( rank `  b ) ) `
 b ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " b
) ) ) )  =  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
5428, 53syl5eq 2327 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (
y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) )  =  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
5554cbvmptv 4111 . . . . . . . . . . . . . 14  |-  ( x  e.  _V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ( R1
`  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
56 recseq 6389 . . . . . . . . . . . . . 14  |-  ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )  -> recs ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) )  = recs (
( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a
)  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) ) ) )
5755, 56ax-mp 8 . . . . . . . . . . . . 13  |- recs ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) )  = recs (
( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a
)  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) ) )
5810, 16, 57dfac12lem3 7771 . . . . . . . . . . . 12  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  ( R1 `  z )  e.  dom  card )
5958ex 423 . . . . . . . . . . 11  |-  ( f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card ) )
6059exlimiv 1666 . . . . . . . . . 10  |-  ( E. f  f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card ) )
619, 60sylbi 187 . . . . . . . . 9  |-  ( ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) )  -> 
( z  e.  On  ->  ( R1 `  z
)  e.  dom  card ) )
628, 61syl 15 . . . . . . . 8  |-  ( (
card `  ~P (har `  ( R1 `  z
) ) )  ~~  ~P (har `  ( R1 `  z ) )  -> 
( z  e.  On  ->  ( R1 `  z
)  e.  dom  card ) )
636, 7, 623syl 18 . . . . . . 7  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card )
)
6463imp 418 . . . . . 6  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( R1 `  z )  e.  dom  card )
65 r1suc 7442 . . . . . . . . 9  |-  ( z  e.  On  ->  ( R1 `  suc  z )  =  ~P ( R1
`  z ) )
6665adantl 452 . . . . . . . 8  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( R1 `  suc  z )  =  ~P ( R1 `  z ) )
6766eleq2d 2350 . . . . . . 7  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  <->  y  e.  ~P ( R1 `  z
) ) )
68 elpwi 3633 . . . . . . 7  |-  ( y  e.  ~P ( R1
`  z )  -> 
y  C_  ( R1 `  z ) )
6967, 68syl6bi 219 . . . . . 6  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  ->  y  C_  ( R1 `  z
) ) )
70 ssnum 7666 . . . . . 6  |-  ( ( ( R1 `  z
)  e.  dom  card  /\  y  C_  ( R1 `  z ) )  -> 
y  e.  dom  card )
7164, 69, 70ee12an 1353 . . . . 5  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  ->  y  e.  dom  card ) )
7271rexlimdva 2667 . . . 4  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( E. z  e.  On  y  e.  ( R1 ` 
suc  z )  -> 
y  e.  dom  card ) )
731, 72syl5bi 208 . . 3  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( y  e.  U. ( R1 " On )  -> 
y  e.  dom  card ) )
7473ssrdv 3185 . 2  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  U. ( R1 " On )  C_  dom  card )
75 onwf 7502 . . . . . 6  |-  On  C_  U. ( R1 " On )
7675sseli 3176 . . . . 5  |-  ( x  e.  On  ->  x  e.  U. ( R1 " On ) )
77 pwwf 7479 . . . . 5  |-  ( x  e.  U. ( R1
" On )  <->  ~P x  e.  U. ( R1 " On ) )
7876, 77sylib 188 . . . 4  |-  ( x  e.  On  ->  ~P x  e.  U. ( R1 " On ) )
79 ssel 3174 . . . 4  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  ( ~P x  e.  U. ( R1 " On )  ->  ~P x  e.  dom  card ) )
8078, 79syl5 28 . . 3  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  (
x  e.  On  ->  ~P x  e.  dom  card ) )
8180ralrimiv 2625 . 2  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  A. x  e.  On  ~P x  e. 
dom  card )
8274, 81impbii 180 1  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  U. ( R1 " On )  C_  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   ifcif 3565   ~Pcpw 3625   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    _E cep 4303   Oncon0 4392   suc csuc 4394   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692    o. ccom 4693   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858  recscrecs 6387    +o coa 6476    .o comu 6477    ~~ cen 6860  OrdIsocoi 7224  harchar 7270   R1cr1 7434   rankcrnk 7435   cardccrd 7568
This theorem is referenced by:  dfac12a  7774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484  df-er 6660  df-en 6864  df-dom 6865  df-oi 7225  df-har 7272  df-r1 7436  df-rank 7437  df-card 7572
  Copyright terms: Public domain W3C validator