MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14 Unicode version

Theorem dfac14 17611
Description: Theorem ptcls 17609 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac14  |-  (CHOICE  <->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
Distinct variable group:    f, k, s

Proof of Theorem dfac14
Dummy variables  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5695 . . . . . . . . . 10  |-  ( k  =  x  ->  (
f `  k )  =  ( f `  x ) )
21unieqd 3994 . . . . . . . . 9  |-  ( k  =  x  ->  U. (
f `  k )  =  U. ( f `  x ) )
32pweqd 3772 . . . . . . . 8  |-  ( k  =  x  ->  ~P U. ( f `  k
)  =  ~P U. ( f `  x
) )
43cbvixpv 7047 . . . . . . 7  |-  X_ k  e.  dom  f ~P U. ( f `  k
)  =  X_ x  e.  dom  f ~P U. ( f `  x
)
54eleq2i 2476 . . . . . 6  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  <->  s  e.  X_ x  e.  dom  f ~P U. ( f `  x ) )
6 simplr 732 . . . . . . . . . . 11  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  f : dom  f
--> Top )
76feqmptd 5746 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  f  =  ( k  e.  dom  f  |->  ( f `  k
) ) )
87fveq2d 5699 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( Xt_ `  f
)  =  ( Xt_ `  ( k  e.  dom  f  |->  ( f `  k ) ) ) )
98fveq2d 5699 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( cls `  ( Xt_ `  f ) )  =  ( cls `  ( Xt_ `  ( k  e. 
dom  f  |->  ( f `
 k ) ) ) ) )
109fveq1d 5697 . . . . . . 7  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  ( ( cls `  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) ) ) `
 X_ k  e.  dom  f ( s `  k ) ) )
11 eqid 2412 . . . . . . . 8  |-  ( Xt_ `  ( k  e.  dom  f  |->  ( f `  k ) ) )  =  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) )
12 vex 2927 . . . . . . . . . 10  |-  f  e. 
_V
1312dmex 5099 . . . . . . . . 9  |-  dom  f  e.  _V
1413a1i 11 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  dom  f  e.  _V )
156ffvelrnda 5837 . . . . . . . . 9  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
f `  k )  e.  Top )
16 eqid 2412 . . . . . . . . . 10  |-  U. (
f `  k )  =  U. ( f `  k )
1716toptopon 16961 . . . . . . . . 9  |-  ( ( f `  k )  e.  Top  <->  ( f `  k )  e.  (TopOn `  U. ( f `  k ) ) )
1815, 17sylib 189 . . . . . . . 8  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
f `  k )  e.  (TopOn `  U. ( f `
 k ) ) )
19 simpr 448 . . . . . . . . . . . 12  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  s  e.  X_ x  e.  dom  f ~P
U. ( f `  x ) )
2019, 5sylibr 204 . . . . . . . . . . 11  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  s  e.  X_ k  e.  dom  f ~P
U. ( f `  k ) )
21 vex 2927 . . . . . . . . . . . . 13  |-  s  e. 
_V
2221elixp 7036 . . . . . . . . . . . 12  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  <->  ( s  Fn  dom  f  /\  A. k  e.  dom  f ( s `  k )  e.  ~P U. (
f `  k )
) )
2322simprbi 451 . . . . . . . . . . 11  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  ->  A. k  e.  dom  f ( s `  k )  e.  ~P U. ( f `  k
) )
2420, 23syl 16 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  A. k  e.  dom  f ( s `  k )  e.  ~P U. ( f `  k
) )
2524r19.21bi 2772 . . . . . . . . 9  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
s `  k )  e.  ~P U. ( f `
 k ) )
2625elpwid 3776 . . . . . . . 8  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
s `  k )  C_ 
U. ( f `  k ) )
27 fvex 5709 . . . . . . . . . 10  |-  ( s `
 k )  e. 
_V
2813, 27iunex 5958 . . . . . . . . 9  |-  U_ k  e.  dom  f ( s `
 k )  e. 
_V
29 simpll 731 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  -> CHOICE
)
30 acacni 7984 . . . . . . . . . 10  |-  ( (CHOICE  /\  dom  f  e.  _V )  -> AC  dom  f  =  _V )
3129, 13, 30sylancl 644 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  -> AC  dom  f  =  _V )
3228, 31syl5eleqr 2499 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  U_ k  e.  dom  f ( s `  k )  e. AC  dom  f
)
3311, 14, 18, 26, 32ptclsg 17608 . . . . . . 7  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3410, 33eqtrd 2444 . . . . . 6  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
355, 34sylan2b 462 . . . . 5  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ k  e.  dom  f ~P U. ( f `
 k ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3635ralrimiva 2757 . . . 4  |-  ( (CHOICE  /\  f : dom  f --> Top )  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3736ex 424 . . 3  |-  (CHOICE  ->  (
f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) ) )
3837alrimiv 1638 . 2  |-  (CHOICE  ->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
39 vex 2927 . . . . . . . 8  |-  g  e. 
_V
4039dmex 5099 . . . . . . 7  |-  dom  g  e.  _V
4140a1i 11 . . . . . 6  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  dom  g  e.  _V )
42 fvex 5709 . . . . . . 7  |-  ( g `
 x )  e. 
_V
4342a1i 11 . . . . . 6  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  _V )
44 simplrr 738 . . . . . . . 8  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  (/) 
e/  ran  g )
45 df-nel 2578 . . . . . . . 8  |-  ( (/)  e/ 
ran  g  <->  -.  (/)  e.  ran  g )
4644, 45sylib 189 . . . . . . 7  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  -.  (/)  e.  ran  g
)
47 funforn 5627 . . . . . . . . . . . 12  |-  ( Fun  g  <->  g : dom  g -onto-> ran  g )
48 fof 5620 . . . . . . . . . . . 12  |-  ( g : dom  g -onto-> ran  g  ->  g : dom  g --> ran  g )
4947, 48sylbi 188 . . . . . . . . . . 11  |-  ( Fun  g  ->  g : dom  g --> ran  g )
5049ad2antrl 709 . . . . . . . . . 10  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g : dom  g --> ran  g
)
5150ffvelrnda 5837 . . . . . . . . 9  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  ran  g
)
52 eleq1 2472 . . . . . . . . 9  |-  ( ( g `  x )  =  (/)  ->  ( ( g `  x )  e.  ran  g  <->  (/)  e.  ran  g ) )
5351, 52syl5ibcom 212 . . . . . . . 8  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( ( g `  x )  =  (/)  -> 
(/)  e.  ran  g ) )
5453necon3bd 2612 . . . . . . 7  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( -.  (/)  e.  ran  g  ->  ( g `  x )  =/=  (/) ) )
5546, 54mpd 15 . . . . . 6  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  =/=  (/) )
56 eqid 2412 . . . . . 6  |-  ~P U. ( g `  x
)  =  ~P U. ( g `  x
)
57 eqid 2412 . . . . . 6  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  =  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }
58 eqid 2412 . . . . . 6  |-  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )  =  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) )
59 simprl 733 . . . . . . . . 9  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  Fun  g )
60 funfn 5449 . . . . . . . . 9  |-  ( Fun  g  <->  g  Fn  dom  g )
6159, 60sylib 189 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g  Fn  dom  g )
62 ssun1 3478 . . . . . . . . . . 11  |-  ( g `
 k )  C_  ( ( g `  k )  u.  { ~P U. ( g `  k ) } )
63 fvex 5709 . . . . . . . . . . . 12  |-  ( g `
 k )  e. 
_V
6463elpw 3773 . . . . . . . . . . 11  |-  ( ( g `  k )  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  <->  ( g `  k )  C_  (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) )
6562, 64mpbir 201 . . . . . . . . . 10  |-  ( g `
 k )  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )
6665rgenw 2741 . . . . . . . . 9  |-  A. k  e.  dom  g ( g `
 k )  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )
6766a1i 11 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  A. k  e.  dom  g ( g `
 k )  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) )
6839elixp 7036 . . . . . . . 8  |-  ( g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  <->  ( g  Fn  dom  g  /\  A. k  e.  dom  g ( g `  k )  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) )
6961, 67, 68sylanbrc 646 . . . . . . 7  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) )
70 simpl 444 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
71 snex 4373 . . . . . . . . . . . . 13  |-  { ~P U. ( g `  x
) }  e.  _V
7242, 71unex 4674 . . . . . . . . . . . 12  |-  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  e. 
_V
73 ssun2 3479 . . . . . . . . . . . . 13  |-  { ~P U. ( g `  x
) }  C_  (
( g `  x
)  u.  { ~P U. ( g `  x
) } )
7442uniex 4672 . . . . . . . . . . . . . . 15  |-  U. (
g `  x )  e.  _V
7574pwex 4350 . . . . . . . . . . . . . 14  |-  ~P U. ( g `  x
)  e.  _V
7675snid 3809 . . . . . . . . . . . . 13  |-  ~P U. ( g `  x
)  e.  { ~P U. ( g `  x
) }
7773, 76sselii 3313 . . . . . . . . . . . 12  |-  ~P U. ( g `  x
)  e.  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )
78 epttop 17036 . . . . . . . . . . . 12  |-  ( ( ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  e.  _V  /\  ~P U. ( g `  x
)  e.  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) )  ->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  (TopOn `  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) )
7972, 77, 78mp2an 654 . . . . . . . . . . 11  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  (TopOn `  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )
8079topontopi 16959 . . . . . . . . . 10  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  Top
8180a1i 11 . . . . . . . . 9  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) }  e.  Top )
82 eqid 2412 . . . . . . . . 9  |-  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  =  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )
8381, 82fmptd 5860 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) : dom  g
--> Top )
8440mptex 5933 . . . . . . . . 9  |-  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  e. 
_V
85 id 20 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
86 dmeq 5037 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  dom  f  =  dom  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
8772pwex 4350 . . . . . . . . . . . . . 14  |-  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  e. 
_V
8887rabex 4322 . . . . . . . . . . . . 13  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  _V
8988, 82dmmpti 5541 . . . . . . . . . . . 12  |-  dom  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } )  =  dom  g
9086, 89syl6eq 2460 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  dom  f  =  dom  g )
9185, 90feq12d 5549 . . . . . . . . . 10  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( f : dom  f
--> Top  <->  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) : dom  g --> Top )
)
9290ixpeq1d 7041 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P
U. ( f `  k ) )
93 fveq1 5694 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( f `  k
)  =  ( ( x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  k
) )
94 fveq2 5695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  (
g `  x )  =  ( g `  k ) )
9594unieqd 3994 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  k  ->  U. (
g `  x )  =  U. ( g `  k ) )
9695pweqd 3772 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  k  ->  ~P U. ( g `  x
)  =  ~P U. ( g `  k
) )
9796sneqd 3795 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  { ~P U. ( g `  x
) }  =  { ~P U. ( g `  k ) } )
9894, 97uneq12d 3470 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
9998pweqd 3772 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  =  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) )
10096eleq1d 2478 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  ( ~P U. ( g `  x )  e.  y  <->  ~P U. ( g `  k )  e.  y ) )
10198eqeq2d 2423 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  (
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  <->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) )
102100, 101imbi12d 312 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  (
( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )  <->  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) ) )
10399, 102rabeqbidv 2919 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  k  ->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
104 snex 4373 . . . . . . . . . . . . . . . . . . . . 21  |-  { ~P U. ( g `  k
) }  e.  _V
10563, 104unex 4674 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  e. 
_V
106105pwex 4350 . . . . . . . . . . . . . . . . . . 19  |-  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  e. 
_V
107106rabex 4322 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  _V
108103, 82, 107fvmpt 5773 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  dom  g  -> 
( ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  k )  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
10993, 108sylan9eq 2464 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( f `  k )  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
110109unieqd 3994 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  U. ( f `  k )  =  U. { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } )
111 ssun2 3479 . . . . . . . . . . . . . . . . . 18  |-  { ~P U. ( g `  k
) }  C_  (
( g `  k
)  u.  { ~P U. ( g `  k
) } )
11263uniex 4672 . . . . . . . . . . . . . . . . . . . 20  |-  U. (
g `  k )  e.  _V
113112pwex 4350 . . . . . . . . . . . . . . . . . . 19  |-  ~P U. ( g `  k
)  e.  _V
114113snid 3809 . . . . . . . . . . . . . . . . . 18  |-  ~P U. ( g `  k
)  e.  { ~P U. ( g `  k
) }
115111, 114sselii 3313 . . . . . . . . . . . . . . . . 17  |-  ~P U. ( g `  k
)  e.  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )
116 epttop 17036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  e.  _V  /\  ~P U. ( g `  k
)  e.  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) )  ->  { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  (TopOn `  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) )
117105, 115, 116mp2an 654 . . . . . . . . . . . . . . . 16  |-  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  (TopOn `  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
118117toponunii 16960 . . . . . . . . . . . . . . 15  |-  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  = 
U. { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }
119110, 118syl6eqr 2462 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  U. ( f `  k )  =  ( ( g `  k
)  u.  { ~P U. ( g `  k
) } ) )
120119pweqd 3772 . . . . . . . . . . . . 13  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ~P U. (
f `  k )  =  ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) )
121120ixpeq2dva 7044 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  g ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
12292, 121eqtrd 2444 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
123 fveq2 5695 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( Xt_ `  f )  =  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) )
124123fveq2d 5699 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( cls `  ( Xt_ `  f ) )  =  ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) )
12590ixpeq1d 7041 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( s `  k
)  =  X_ k  e.  dom  g ( s `
 k ) )
126124, 125fveq12d 5701 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  =  ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) ) )
12790ixpeq1d 7041 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
128109fveq2d 5699 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( cls `  (
f `  k )
)  =  ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) )
129128fveq1d 5697 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  =  ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) ) )
130129ixpeq2dva 7044 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  g
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
131127, 130eqtrd 2444 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
132126, 131eqeq12d 2426 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  <->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ k  e.  dom  g ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
133122, 132raleqbidv 2884 . . . . . . . . . 10  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  <->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
13491, 133imbi12d 312 . . . . . . . . 9  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  <->  ( (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) : dom  g
--> Top  ->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) ) )
13584, 134spcv 3010 . . . . . . . 8  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  (
( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) : dom  g --> Top  ->  A. s  e.  X_  k  e.  dom  g ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
13670, 83, 135sylc 58 . . . . . . 7  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
137 fveq1 5694 . . . . . . . . . . . 12  |-  ( s  =  g  ->  (
s `  k )  =  ( g `  k ) )
138137ixpeq2dv 7045 . . . . . . . . . . 11  |-  ( s  =  g  ->  X_ k  e.  dom  g ( s `
 k )  = 
X_ k  e.  dom  g ( g `  k ) )
139 fveq2 5695 . . . . . . . . . . . 12  |-  ( k  =  x  ->  (
g `  k )  =  ( g `  x ) )
140139cbvixpv 7047 . . . . . . . . . . 11  |-  X_ k  e.  dom  g ( g `
 k )  = 
X_ x  e.  dom  g ( g `  x )
141138, 140syl6eq 2460 . . . . . . . . . 10  |-  ( s  =  g  ->  X_ k  e.  dom  g ( s `
 k )  = 
X_ x  e.  dom  g ( g `  x ) )
142141fveq2d 5699 . . . . . . . . 9  |-  ( s  =  g  ->  (
( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) ) )
143137fveq2d 5699 . . . . . . . . . . 11  |-  ( s  =  g  ->  (
( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  ( ( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) ) )
144143ixpeq2dv 7045 . . . . . . . . . 10  |-  ( s  =  g  ->  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  X_ k  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) ) )
145139unieqd 3994 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  U. (
g `  k )  =  U. ( g `  x ) )
146145pweqd 3772 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  ~P U. ( g `  k
)  =  ~P U. ( g `  x
) )
147146sneqd 3795 . . . . . . . . . . . . . . . 16  |-  ( k  =  x  ->  { ~P U. ( g `  k
) }  =  { ~P U. ( g `  x ) } )
148139, 147uneq12d 3470 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )
149148pweqd 3772 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  =  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) )
150146eleq1d 2478 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  ( ~P U. ( g `  k )  e.  y  <->  ~P U. ( g `  x )  e.  y ) )
151148eqeq2d 2423 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  <->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) )
152150, 151imbi12d 312 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  (
( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )  <->  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) ) )
153149, 152rabeqbidv 2919 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  =  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )
154153fveq2d 5699 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( cls `  { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )  =  ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
155154, 139fveq12d 5701 . . . . . . . . . . 11  |-  ( k  =  x  ->  (
( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) )  =  ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) ) )
156155cbvixpv 7047 . . . . . . . . . 10  |-  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) )  =  X_ x  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) )
157144, 156syl6eq 2460 . . . . . . . . 9  |-  ( s  =  g  ->  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  X_ x  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) ) )
158142, 157eqeq12d 2426 . . . . . . . 8  |-  ( s  =  g  ->  (
( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
)  <->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) )  = 
X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) ) )
159158rspcv 3016 . . . . . . 7  |-  ( g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  ->  ( A. s  e.  X_  k  e.  dom  g ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
)  ->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) )  = 
X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) ) )
16069, 136, 159sylc 58 . . . . . 6  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  (
( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ x  e.  dom  g ( g `
 x ) )  =  X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) )
16141, 43, 55, 56, 57, 58, 160dfac14lem 17610 . . . . 5  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) )
162161ex 424 . . . 4  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  (
( Fun  g  /\  (/) 
e/  ran  g )  -> 
X_ x  e.  dom  g ( g `  x )  =/=  (/) ) )
163162alrimiv 1638 . . 3  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
164 dfac9 7980 . . 3  |-  (CHOICE  <->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
165163, 164sylibr 204 . 2  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  -> CHOICE )
16638, 165impbii 181 1  |-  (CHOICE  <->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721    =/= wne 2575    e/ wnel 2576   A.wral 2674   {crab 2678   _Vcvv 2924    u. cun 3286    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   {csn 3782   U.cuni 3983   U_ciun 4061    e. cmpt 4234   dom cdm 4845   ran crn 4846   Fun wfun 5415    Fn wfn 5416   -->wf 5417   -onto->wfo 5419   ` cfv 5421   X_cixp 7030  AC wacn 7789  CHOICEwac 7960   Xt_cpt 13629   Topctop 16921  TopOnctopon 16922   clsccl 17045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-ixp 7031  df-en 7077  df-dom 7078  df-fin 7080  df-fi 7382  df-card 7790  df-acn 7793  df-ac 7961  df-topgen 13630  df-pt 13631  df-top 16926  df-bases 16928  df-topon 16929  df-cld 17046  df-ntr 17047  df-cls 17048
  Copyright terms: Public domain W3C validator