Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac21 Unicode version

Theorem dfac21 27040
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
dfac21  |-  (CHOICE  <->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )

Proof of Theorem dfac21
Dummy variables  g 
y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2927 . . . . . . 7  |-  f  e. 
_V
21dmex 5099 . . . . . 6  |-  dom  f  e.  _V
32a1i 11 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  dom  f  e. 
_V )
4 simpr 448 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  f : dom  f --> Comp )
5 fvex 5709 . . . . . . . 8  |-  ( Xt_ `  f )  e.  _V
65uniex 4672 . . . . . . 7  |-  U. ( Xt_ `  f )  e. 
_V
7 acufl 17910 . . . . . . . 8  |-  (CHOICE  -> UFL  =  _V )
87adantr 452 . . . . . . 7  |-  ( (CHOICE  /\  f : dom  f --> Comp )  -> UFL  =  _V )
96, 8syl5eleqr 2499 . . . . . 6  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e. UFL )
10 simpl 444 . . . . . . . 8  |-  ( (CHOICE  /\  f : dom  f --> Comp )  -> CHOICE )
11 dfac10 7981 . . . . . . . 8  |-  (CHOICE  <->  dom  card  =  _V )
1210, 11sylib 189 . . . . . . 7  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  dom  card  =  _V )
136, 12syl5eleqr 2499 . . . . . 6  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e. 
dom  card )
14 elin 3498 . . . . . 6  |-  ( U. ( Xt_ `  f )  e.  (UFL  i^i  dom  card )  <->  ( U. ( Xt_ `  f )  e. UFL  /\  U. ( Xt_ `  f
)  e.  dom  card ) )
159, 13, 14sylanbrc 646 . . . . 5  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  U. ( Xt_ `  f )  e.  (UFL  i^i  dom  card )
)
16 eqid 2412 . . . . . 6  |-  ( Xt_ `  f )  =  (
Xt_ `  f )
17 eqid 2412 . . . . . 6  |-  U. ( Xt_ `  f )  = 
U. ( Xt_ `  f
)
1816, 17ptcmpg 18049 . . . . 5  |-  ( ( dom  f  e.  _V  /\  f : dom  f --> Comp  /\  U. ( Xt_ `  f )  e.  (UFL 
i^i  dom  card ) )  -> 
( Xt_ `  f )  e.  Comp )
193, 4, 15, 18syl3anc 1184 . . . 4  |-  ( (CHOICE  /\  f : dom  f --> Comp )  ->  ( Xt_ `  f )  e.  Comp )
2019ex 424 . . 3  |-  (CHOICE  ->  (
f : dom  f --> Comp  ->  ( Xt_ `  f
)  e.  Comp )
)
2120alrimiv 1638 . 2  |-  (CHOICE  ->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )
22 fvex 5709 . . . . . . . . . . 11  |-  ( g `
 y )  e. 
_V
23 kelac2lem 27038 . . . . . . . . . . 11  |-  ( ( g `  y )  e.  _V  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  e.  Comp )
2422, 23mp1i 12 . . . . . . . . . 10  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  y  e.  dom  g )  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  e.  Comp )
25 eqid 2412 . . . . . . . . . 10  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  =  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) )
2624, 25fmptd 5860 . . . . . . . . 9  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  g --> Comp )
27 ffdm 5572 . . . . . . . . 9  |-  ( ( y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  g --> Comp  ->  ( ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp  /\  dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  C_  dom  g ) )
2826, 27syl 16 . . . . . . . 8  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp  /\  dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  C_  dom  g ) )
2928simpld 446 . . . . . . 7  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) : dom  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) --> Comp )
30 vex 2927 . . . . . . . . . 10  |-  g  e. 
_V
3130dmex 5099 . . . . . . . . 9  |-  dom  g  e.  _V
3231mptex 5933 . . . . . . . 8  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  e. 
_V
33 id 20 . . . . . . . . . 10  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )
34 dmeq 5037 . . . . . . . . . 10  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  dom  f  =  dom  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) ) )
3533, 34feq12d 5549 . . . . . . . . 9  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
f : dom  f --> Comp  <-> 
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp ) )
36 fveq2 5695 . . . . . . . . . 10  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  ( Xt_ `  f )  =  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) ) )
3736eleq1d 2478 . . . . . . . . 9  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
( Xt_ `  f )  e.  Comp  <->  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp ) )
3835, 37imbi12d 312 . . . . . . . 8  |-  ( f  =  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) )  ->  (
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) 
<->  ( ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) : dom  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) --> Comp  ->  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp ) ) )
3932, 38spcv 3010 . . . . . . 7  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  (
( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) : dom  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) --> Comp 
->  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp ) )
4029, 39syl5com 28 . . . . . 6  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  ( Xt_ `  ( y  e. 
dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp ) )
41 fvex 5709 . . . . . . . . 9  |-  ( g `
 x )  e. 
_V
4241a1i 11 . . . . . . . 8  |-  ( ( ( ( Fun  g  /\  (/)  e/  ran  g
)  /\  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp )  /\  x  e.  dom  g )  ->  (
g `  x )  e.  _V )
43 df-nel 2578 . . . . . . . . . . . 12  |-  ( (/)  e/ 
ran  g  <->  -.  (/)  e.  ran  g )
4443biimpi 187 . . . . . . . . . . 11  |-  ( (/)  e/ 
ran  g  ->  -.  (/) 
e.  ran  g )
4544ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  -.  (/) 
e.  ran  g )
46 fvelrn 5833 . . . . . . . . . . . . 13  |-  ( ( Fun  g  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  ran  g
)
4746adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
g `  x )  e.  ran  g )
48 eleq1 2472 . . . . . . . . . . . 12  |-  ( ( g `  x )  =  (/)  ->  ( ( g `  x )  e.  ran  g  <->  (/)  e.  ran  g ) )
4947, 48syl5ibcom 212 . . . . . . . . . . 11  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
( g `  x
)  =  (/)  ->  (/)  e.  ran  g ) )
5049necon3bd 2612 . . . . . . . . . 10  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  ( -.  (/)  e.  ran  g  ->  ( g `  x
)  =/=  (/) ) )
5145, 50mpd 15 . . . . . . . . 9  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  x  e.  dom  g )  ->  (
g `  x )  =/=  (/) )
5251adantlr 696 . . . . . . . 8  |-  ( ( ( ( Fun  g  /\  (/)  e/  ran  g
)  /\  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  e.  Comp )  /\  x  e.  dom  g )  ->  (
g `  x )  =/=  (/) )
53 fveq2 5695 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
g `  y )  =  ( g `  x ) )
5453unieqd 3994 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  U. (
g `  y )  =  U. ( g `  x ) )
5554pweqd 3772 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  ~P U. ( g `  y
)  =  ~P U. ( g `  x
) )
5655sneqd 3795 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  { ~P U. ( g `  y
) }  =  { ~P U. ( g `  x ) } )
5753, 56preq12d 3859 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  { ( g `  y ) ,  { ~P U. ( g `  y
) } }  =  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
)
5857fveq2d 5699 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( topGen `
 { ( g `
 y ) ,  { ~P U. (
g `  y ) } } )  =  (
topGen `  { ( g `
 x ) ,  { ~P U. (
g `  x ) } } ) )
5958cbvmptv 4268 . . . . . . . . . . . 12  |-  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) )  =  ( x  e.  dom  g  |->  ( topGen `  {
( g `  x
) ,  { ~P U. ( g `  x
) } } ) )
6059fveq2i 5698 . . . . . . . . . . 11  |-  ( Xt_ `  ( y  e.  dom  g  |->  ( topGen `  {
( g `  y
) ,  { ~P U. ( g `  y
) } } ) ) )  =  (
Xt_ `  ( x  e.  dom  g  |->  ( topGen `  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
) ) )
6160eleq1i 2475 . . . . . . . . . 10  |-  ( (
Xt_ `  ( y  e.  dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp 
<->  ( Xt_ `  (
x  e.  dom  g  |->  ( topGen `  { (
g `  x ) ,  { ~P U. (
g `  x ) } } ) ) )  e.  Comp )
6261biimpi 187 . . . . . . . . 9  |-  ( (
Xt_ `  ( y  e.  dom  g  |->  ( topGen `  { ( g `  y ) ,  { ~P U. ( g `  y ) } }
) ) )  e. 
Comp  ->  ( Xt_ `  (
x  e.  dom  g  |->  ( topGen `  { (
g `  x ) ,  { ~P U. (
g `  x ) } } ) ) )  e.  Comp )
6362adantl 453 . . . . . . . 8  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp )  ->  ( Xt_ `  ( x  e. 
dom  g  |->  ( topGen `  { ( g `  x ) ,  { ~P U. ( g `  x ) } }
) ) )  e. 
Comp )
6442, 52, 63kelac2 27039 . . . . . . 7  |-  ( ( ( Fun  g  /\  (/) 
e/  ran  g )  /\  ( Xt_ `  (
y  e.  dom  g  |->  ( topGen `  { (
g `  y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp )  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) )
6564ex 424 . . . . . 6  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  (
( Xt_ `  ( y  e.  dom  g  |->  (
topGen `  { ( g `
 y ) ,  { ~P U. (
g `  y ) } } ) ) )  e.  Comp  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) ) )
6640, 65syld 42 . . . . 5  |-  ( ( Fun  g  /\  (/)  e/  ran  g )  ->  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) ) )
6766com12 29 . . . 4  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  (
( Fun  g  /\  (/) 
e/  ran  g )  -> 
X_ x  e.  dom  g ( g `  x )  =/=  (/) ) )
6867alrimiv 1638 . . 3  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  ->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
69 dfac9 7980 . . 3  |-  (CHOICE  <->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
7068, 69sylibr 204 . 2  |-  ( A. f ( f : dom  f --> Comp  ->  (
Xt_ `  f )  e.  Comp )  -> CHOICE )
7121, 70impbii 181 1  |-  (CHOICE  <->  A. f
( f : dom  f
--> Comp  ->  ( Xt_ `  f )  e.  Comp ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721    =/= wne 2575    e/ wnel 2576   _Vcvv 2924    i^i cin 3287    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   {csn 3782   {cpr 3783   U.cuni 3983    e. cmpt 4234   dom cdm 4845   ran crn 4846   Fun wfun 5415   -->wf 5417   ` cfv 5421   X_cixp 7030   cardccrd 7786  CHOICEwac 7960   topGenctg 13628   Xt_cpt 13629   Compccmp 17411  UFLcufl 17893
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-rpss 6489  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-omul 6696  df-er 6872  df-map 6987  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-wdom 7491  df-card 7790  df-acn 7793  df-ac 7961  df-cda 8012  df-topgen 13630  df-pt 13631  df-fbas 16662  df-fg 16663  df-top 16926  df-bases 16928  df-topon 16929  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-cmp 17412  df-fil 17839  df-ufil 17894  df-ufl 17895  df-flim 17932  df-fcls 17934
  Copyright terms: Public domain W3C validator