MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5 Structured version   Unicode version

Theorem dfac5 8014
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of [Enderton] p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac5  |-  (CHOICE  <->  A. x
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac5
Dummy variables  f  h  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac4 8008 . . 3  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. w  e.  x  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) ) )
2 neeq1 2611 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
z  =/=  (/)  <->  w  =/=  (/) ) )
32cbvralv 2934 . . . . . . . . . . . 12  |-  ( A. z  e.  x  z  =/=  (/)  <->  A. w  e.  x  w  =/=  (/) )
43anbi2i 677 . . . . . . . . . . 11  |-  ( ( A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  A. z  e.  x  z  =/=  (/) )  <->  ( A. w  e.  x  (
w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  A. w  e.  x  w  =/=  (/) ) )
5 r19.26 2840 . . . . . . . . . . 11  |-  ( A. w  e.  x  (
( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  w  =/=  (/) )  <->  ( A. w  e.  x  (
w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  A. w  e.  x  w  =/=  (/) ) )
64, 5bitr4i 245 . . . . . . . . . 10  |-  ( ( A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  A. z  e.  x  z  =/=  (/) )  <->  A. w  e.  x  ( (
w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  w  =/=  (/) ) )
7 pm3.35 572 . . . . . . . . . . . 12  |-  ( ( w  =/=  (/)  /\  (
w  =/=  (/)  ->  (
f `  w )  e.  w ) )  -> 
( f `  w
)  e.  w )
87ancoms 441 . . . . . . . . . . 11  |-  ( ( ( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  w  =/=  (/) )  ->  (
f `  w )  e.  w )
98ralimi 2783 . . . . . . . . . 10  |-  ( A. w  e.  x  (
( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  w  =/=  (/) )  ->  A. w  e.  x  ( f `  w )  e.  w
)
106, 9sylbi 189 . . . . . . . . 9  |-  ( ( A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w )  /\  A. z  e.  x  z  =/=  (/) )  ->  A. w  e.  x  ( f `  w )  e.  w
)
11 r19.26 2840 . . . . . . . . . . . . . . . . . 18  |-  ( A. w  e.  x  (
( f `  w
)  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  <-> 
( A. w  e.  x  ( f `  w )  e.  w  /\  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) ) )
12 elin 3532 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  ( z  i^i 
ran  f )  <->  ( v  e.  z  /\  v  e.  ran  f ) )
13 fvelrnb 5777 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  Fn  x  ->  (
v  e.  ran  f  <->  E. t  e.  x  ( f `  t )  =  v ) )
1413biimpac 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  ran  f  /\  f  Fn  x
)  ->  E. t  e.  x  ( f `  t )  =  v )
15 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  =  t  ->  (
f `  w )  =  ( f `  t ) )
16 id 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  =  t  ->  w  =  t )
1715, 16eleq12d 2506 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  =  t  ->  (
( f `  w
)  e.  w  <->  ( f `  t )  e.  t ) )
18 neeq2 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  =  t  ->  (
z  =/=  w  <->  z  =/=  t ) )
19 ineq2 3538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( w  =  t  ->  (
z  i^i  w )  =  ( z  i^i  t ) )
2019eqeq1d 2446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  =  t  ->  (
( z  i^i  w
)  =  (/)  <->  ( z  i^i  t )  =  (/) ) )
2118, 20imbi12d 313 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  =  t  ->  (
( z  =/=  w  ->  ( z  i^i  w
)  =  (/) )  <->  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) ) )
2217, 21anbi12d 693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  =  t  ->  (
( ( f `  w )  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  <-> 
( ( f `  t )  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) ) ) )
2322rspcv 3050 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  x  ->  ( A. w  e.  x  ( ( f `  w )  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  ( ( f `
 t )  e.  t  /\  ( z  =/=  t  ->  (
z  i^i  t )  =  (/) ) ) ) )
24 eleq1 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f `  t )  =  v  ->  (
( f `  t
)  e.  z  <->  v  e.  z ) )
2524biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( f `  t
)  =  v  /\  v  e.  z )  ->  ( f `  t
)  e.  z )
26 minel 3685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( f `  t
)  e.  t  /\  ( z  i^i  t
)  =  (/) )  ->  -.  ( f `  t
)  e.  z )
2726ex 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( f `  t )  e.  t  ->  (
( z  i^i  t
)  =  (/)  ->  -.  ( f `  t
)  e.  z ) )
2827imim2d 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( f `  t )  e.  t  ->  (
( z  =/=  t  ->  ( z  i^i  t
)  =  (/) )  -> 
( z  =/=  t  ->  -.  ( f `  t )  e.  z ) ) )
2928imp 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( f `  t
)  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t
)  =  (/) ) )  ->  ( z  =/=  t  ->  -.  (
f `  t )  e.  z ) )
3029necon4ad 2667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( f `  t
)  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t
)  =  (/) ) )  ->  ( ( f `
 t )  e.  z  ->  z  =  t ) )
3130imp 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( f `  t )  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) )  /\  (
f `  t )  e.  z )  ->  z  =  t )
3225, 31sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( f `  t )  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) )  /\  (
( f `  t
)  =  v  /\  v  e.  z )
)  ->  z  =  t )
33 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( z  =  t  ->  (
f `  z )  =  ( f `  t ) )
34 eqeq2 2447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( f `  t )  =  v  ->  (
( f `  z
)  =  ( f `
 t )  <->  ( f `  z )  =  v ) )
35 eqcom 2440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( f `  z )  =  v  <->  v  =  ( f `  z
) )
3634, 35syl6bb 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f `  t )  =  v  ->  (
( f `  z
)  =  ( f `
 t )  <->  v  =  ( f `  z
) ) )
3733, 36syl5ib 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f `  t )  =  v  ->  (
z  =  t  -> 
v  =  ( f `
 z ) ) )
3837ad2antrl 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( f `  t )  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) )  /\  (
( f `  t
)  =  v  /\  v  e.  z )
)  ->  ( z  =  t  ->  v  =  ( f `  z
) ) )
3932, 38mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( f `  t )  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t )  =  (/) ) )  /\  (
( f `  t
)  =  v  /\  v  e.  z )
)  ->  v  =  ( f `  z
) )
4039exp32 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( f `  t
)  e.  t  /\  ( z  =/=  t  ->  ( z  i^i  t
)  =  (/) ) )  ->  ( ( f `
 t )  =  v  ->  ( v  e.  z  ->  v  =  ( f `  z
) ) ) )
4123, 40syl6com 34 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. w  e.  x  (
( f `  w
)  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  ( t  e.  x  ->  ( (
f `  t )  =  v  ->  ( v  e.  z  ->  v  =  ( f `  z ) ) ) ) )
4241com14 85 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  z  ->  (
t  e.  x  -> 
( ( f `  t )  =  v  ->  ( A. w  e.  x  ( (
f `  w )  e.  w  /\  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  v  =  ( f `  z ) ) ) ) )
4342rexlimdv 2831 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  e.  z  ->  ( E. t  e.  x  ( f `  t
)  =  v  -> 
( A. w  e.  x  ( ( f `
 w )  e.  w  /\  ( z  =/=  w  ->  (
z  i^i  w )  =  (/) ) )  -> 
v  =  ( f `
 z ) ) ) )
4414, 43syl5 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  z  ->  (
( v  e.  ran  f  /\  f  Fn  x
)  ->  ( A. w  e.  x  (
( f `  w
)  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  v  =  ( f `  z ) ) ) )
4544exp3a 427 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  z  ->  (
v  e.  ran  f  ->  ( f  Fn  x  ->  ( A. w  e.  x  ( ( f `
 w )  e.  w  /\  ( z  =/=  w  ->  (
z  i^i  w )  =  (/) ) )  -> 
v  =  ( f `
 z ) ) ) ) )
4645com4t 82 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  x  ->  ( A. w  e.  x  ( ( f `  w )  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  ( v  e.  z  ->  ( v  e.  ran  f  ->  v  =  ( f `  z ) ) ) ) )
4746imp4b 575 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  Fn  x  /\  A. w  e.  x  ( ( f `  w
)  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) ) )  ->  ( (
v  e.  z  /\  v  e.  ran  f )  ->  v  =  ( f `  z ) ) )
4812, 47syl5bi 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  Fn  x  /\  A. w  e.  x  ( ( f `  w
)  e.  w  /\  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) ) )  ->  ( v  e.  ( z  i^i  ran  f )  ->  v  =  ( f `  z ) ) )
4911, 48sylan2br 464 . . . . . . . . . . . . . . . . 17  |-  ( ( f  Fn  x  /\  ( A. w  e.  x  ( f `  w
)  e.  w  /\  A. w  e.  x  ( z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) ) )  ->  ( v  e.  ( z  i^i  ran  f )  ->  v  =  ( f `  z ) ) )
5049anassrs 631 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  (
v  e.  ( z  i^i  ran  f )  ->  v  =  ( f `
 z ) ) )
5150adantlr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w )  e.  w
)  /\  z  e.  x )  /\  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  ( v  e.  ( z  i^i  ran  f )  ->  v  =  ( f `  z ) ) )
52 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  z  ->  (
f `  w )  =  ( f `  z ) )
53 id 21 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  z  ->  w  =  z )
5452, 53eleq12d 2506 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  z  ->  (
( f `  w
)  e.  w  <->  ( f `  z )  e.  z ) )
5554rspcv 3050 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  x  ->  ( A. w  e.  x  ( f `  w
)  e.  w  -> 
( f `  z
)  e.  z ) )
56 fnfvelrn 5870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  x  /\  z  e.  x )  ->  ( f `  z
)  e.  ran  f
)
5756expcom 426 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  x  ->  (
f  Fn  x  -> 
( f `  z
)  e.  ran  f
) )
5855, 57anim12d 548 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  x  ->  (
( A. w  e.  x  ( f `  w )  e.  w  /\  f  Fn  x
)  ->  ( (
f `  z )  e.  z  /\  (
f `  z )  e.  ran  f ) ) )
59 elin 3532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f `  z )  e.  ( z  i^i 
ran  f )  <->  ( (
f `  z )  e.  z  /\  (
f `  z )  e.  ran  f ) )
6058, 59syl6ibr 220 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  x  ->  (
( A. w  e.  x  ( f `  w )  e.  w  /\  f  Fn  x
)  ->  ( f `  z )  e.  ( z  i^i  ran  f
) ) )
6160exp3a 427 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  x  ->  ( A. w  e.  x  ( f `  w
)  e.  w  -> 
( f  Fn  x  ->  ( f `  z
)  e.  ( z  i^i  ran  f )
) ) )
6261com13 77 . . . . . . . . . . . . . . . . . 18  |-  ( f  Fn  x  ->  ( A. w  e.  x  ( f `  w
)  e.  w  -> 
( z  e.  x  ->  ( f `  z
)  e.  ( z  i^i  ran  f )
) ) )
6362imp31 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  z  e.  x
)  ->  ( f `  z )  e.  ( z  i^i  ran  f
) )
64 eleq1 2498 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( f `  z )  ->  (
v  e.  ( z  i^i  ran  f )  <->  ( f `  z )  e.  ( z  i^i 
ran  f ) ) )
6563, 64syl5ibrcom 215 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  z  e.  x
)  ->  ( v  =  ( f `  z )  ->  v  e.  ( z  i^i  ran  f ) ) )
6665adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w )  e.  w
)  /\  z  e.  x )  /\  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  ( v  =  ( f `  z
)  ->  v  e.  ( z  i^i  ran  f ) ) )
6751, 66impbid 185 . . . . . . . . . . . . . 14  |-  ( ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w )  e.  w
)  /\  z  e.  x )  /\  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  ( v  e.  ( z  i^i  ran  f )  <->  v  =  ( f `  z
) ) )
6867ex 425 . . . . . . . . . . . . 13  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  z  e.  x
)  ->  ( A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  -> 
( v  e.  ( z  i^i  ran  f
)  <->  v  =  ( f `  z ) ) ) )
6968alrimdv 1644 . . . . . . . . . . . 12  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  z  e.  x
)  ->  ( A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  A. v ( v  e.  ( z  i^i  ran  f )  <->  v  =  ( f `  z
) ) ) )
70 fvex 5745 . . . . . . . . . . . . . 14  |-  ( f `
 z )  e. 
_V
71 eqeq2 2447 . . . . . . . . . . . . . . . 16  |-  ( h  =  ( f `  z )  ->  (
v  =  h  <->  v  =  ( f `  z
) ) )
7271bibi2d 311 . . . . . . . . . . . . . . 15  |-  ( h  =  ( f `  z )  ->  (
( v  e.  ( z  i^i  ran  f
)  <->  v  =  h )  <->  ( v  e.  ( z  i^i  ran  f )  <->  v  =  ( f `  z
) ) ) )
7372albidv 1636 . . . . . . . . . . . . . 14  |-  ( h  =  ( f `  z )  ->  ( A. v ( v  e.  ( z  i^i  ran  f )  <->  v  =  h )  <->  A. v
( v  e.  ( z  i^i  ran  f
)  <->  v  =  ( f `  z ) ) ) )
7470, 73spcev 3045 . . . . . . . . . . . . 13  |-  ( A. v ( v  e.  ( z  i^i  ran  f )  <->  v  =  ( f `  z
) )  ->  E. h A. v ( v  e.  ( z  i^i  ran  f )  <->  v  =  h ) )
75 df-eu 2287 . . . . . . . . . . . . 13  |-  ( E! v  v  e.  ( z  i^i  ran  f
)  <->  E. h A. v
( v  e.  ( z  i^i  ran  f
)  <->  v  =  h ) )
7674, 75sylibr 205 . . . . . . . . . . . 12  |-  ( A. v ( v  e.  ( z  i^i  ran  f )  <->  v  =  ( f `  z
) )  ->  E! v  v  e.  (
z  i^i  ran  f ) )
7769, 76syl6 32 . . . . . . . . . . 11  |-  ( ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w
)  e.  w )  /\  z  e.  x
)  ->  ( A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  E! v  v  e.  ( z  i^i  ran  f ) ) )
7877ralimdva 2786 . . . . . . . . . 10  |-  ( ( f  Fn  x  /\  A. w  e.  x  ( f `  w )  e.  w )  -> 
( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  A. z  e.  x  E! v  v  e.  ( z  i^i  ran  f ) ) )
7978ex 425 . . . . . . . . 9  |-  ( f  Fn  x  ->  ( A. w  e.  x  ( f `  w
)  e.  w  -> 
( A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) )  ->  A. z  e.  x  E! v  v  e.  ( z  i^i  ran  f ) ) ) )
8010, 79syl5 31 . . . . . . . 8  |-  ( f  Fn  x  ->  (
( A. w  e.  x  ( w  =/=  (/)  ->  ( f `  w )  e.  w
)  /\  A. z  e.  x  z  =/=  (/) )  ->  ( A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  A. z  e.  x  E! v  v  e.  ( z  i^i  ran  f ) ) ) )
8180exp3a 427 . . . . . . 7  |-  ( f  Fn  x  ->  ( A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w )  ->  ( A. z  e.  x  z  =/=  (/)  ->  ( A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) )  ->  A. z  e.  x  E! v  v  e.  ( z  i^i  ran  f ) ) ) ) )
8281imp4b 575 . . . . . 6  |-  ( ( f  Fn  x  /\  A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )  -> 
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  A. z  e.  x  E! v  v  e.  ( z  i^i  ran  f ) ) )
83 vex 2961 . . . . . . . 8  |-  f  e. 
_V
8483rnex 5136 . . . . . . 7  |-  ran  f  e.  _V
85 ineq2 3538 . . . . . . . . . 10  |-  ( y  =  ran  f  -> 
( z  i^i  y
)  =  ( z  i^i  ran  f )
)
8685eleq2d 2505 . . . . . . . . 9  |-  ( y  =  ran  f  -> 
( v  e.  ( z  i^i  y )  <-> 
v  e.  ( z  i^i  ran  f )
) )
8786eubidv 2291 . . . . . . . 8  |-  ( y  =  ran  f  -> 
( E! v  v  e.  ( z  i^i  y )  <->  E! v 
v  e.  ( z  i^i  ran  f )
) )
8887ralbidv 2727 . . . . . . 7  |-  ( y  =  ran  f  -> 
( A. z  e.  x  E! v  v  e.  ( z  i^i  y )  <->  A. z  e.  x  E! v 
v  e.  ( z  i^i  ran  f )
) )
8984, 88spcev 3045 . . . . . 6  |-  ( A. z  e.  x  E! v  v  e.  (
z  i^i  ran  f )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) )
9082, 89syl6 32 . . . . 5  |-  ( ( f  Fn  x  /\  A. w  e.  x  ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )  -> 
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
9190exlimiv 1645 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. w  e.  x  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )  ->  (
( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  (
z  =/=  w  -> 
( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
9291alimi 1569 . . 3  |-  ( A. x E. f ( f  Fn  x  /\  A. w  e.  x  (
w  =/=  (/)  ->  (
f `  w )  e.  w ) )  ->  A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) ) )
931, 92sylbi 189 . 2  |-  (CHOICE  ->  A. x
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
94 eqid 2438 . . . . 5  |-  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
95 eqid 2438 . . . . 5  |-  ( U. { u  |  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  i^i  y
)  =  ( U. { u  |  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  i^i  y
)
96 biid 229 . . . . 5  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  <->  A. x
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
9794, 95, 96dfac5lem5 8013 . . . 4  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )
9897alrimiv 1642 . . 3  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  ->  A. h E. f A. w  e.  h  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
99 dfac3 8007 . . 3  |-  (CHOICE  <->  A. h E. f A. w  e.  h  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
10098, 99sylibr 205 . 2  |-  ( A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) )  -> CHOICE )
10193, 100impbii 182 1  |-  (CHOICE  <->  A. x
( ( A. z  e.  x  z  =/=  (/) 
/\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w
)  =  (/) ) )  ->  E. y A. z  e.  x  E! v 
v  e.  ( z  i^i  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   E!weu 2283   {cab 2424    =/= wne 2601   A.wral 2707   E.wrex 2708    i^i cin 3321   (/)c0 3630   {csn 3816   U.cuni 4017    X. cxp 4879   ran crn 4882    Fn wfn 5452   ` cfv 5457  CHOICEwac 8001
This theorem is referenced by:  dfackm  8051  ac8  8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ac 8002
  Copyright terms: Public domain W3C validator