MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem1 Structured version   Unicode version

Theorem dfac5lem1 8004
Description: Lemma for dfac5 8009. (Contributed by NM, 12-Apr-2004.)
Assertion
Ref Expression
dfac5lem1  |-  ( E! v  v  e.  ( ( { w }  X.  w )  i^i  y
)  <->  E! g ( g  e.  w  /\  <. w ,  g >.  e.  y ) )
Distinct variable group:    w, v, y, g

Proof of Theorem dfac5lem1
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 elin 3530 . . . 4  |-  ( v  e.  ( ( { w }  X.  w
)  i^i  y )  <->  ( v  e.  ( { w }  X.  w
)  /\  v  e.  y ) )
2 elxp 4895 . . . . . 6  |-  ( v  e.  ( { w }  X.  w )  <->  E. t E. g ( v  = 
<. t ,  g >.  /\  ( t  e.  {
w }  /\  g  e.  w ) ) )
3 excom 1756 . . . . . 6  |-  ( E. t E. g ( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  <->  E. g E. t ( v  = 
<. t ,  g >.  /\  ( t  e.  {
w }  /\  g  e.  w ) ) )
42, 3bitri 241 . . . . 5  |-  ( v  e.  ( { w }  X.  w )  <->  E. g E. t ( v  = 
<. t ,  g >.  /\  ( t  e.  {
w }  /\  g  e.  w ) ) )
54anbi1i 677 . . . 4  |-  ( ( v  e.  ( { w }  X.  w
)  /\  v  e.  y )  <->  ( E. g E. t ( v  =  <. t ,  g
>.  /\  ( t  e. 
{ w }  /\  g  e.  w )
)  /\  v  e.  y ) )
6 19.41vv 1925 . . . . 5  |-  ( E. g E. t ( ( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  /\  v  e.  y )  <->  ( E. g E. t ( v  =  <. t ,  g
>.  /\  ( t  e. 
{ w }  /\  g  e.  w )
)  /\  v  e.  y ) )
7 an32 774 . . . . . . . . 9  |-  ( ( ( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  /\  v  e.  y )  <->  ( (
v  =  <. t ,  g >.  /\  v  e.  y )  /\  (
t  e.  { w }  /\  g  e.  w
) ) )
8 eleq1 2496 . . . . . . . . . . 11  |-  ( v  =  <. t ,  g
>.  ->  ( v  e.  y  <->  <. t ,  g
>.  e.  y ) )
98pm5.32i 619 . . . . . . . . . 10  |-  ( ( v  =  <. t ,  g >.  /\  v  e.  y )  <->  ( v  =  <. t ,  g
>.  /\  <. t ,  g
>.  e.  y ) )
10 elsn 3829 . . . . . . . . . . 11  |-  ( t  e.  { w }  <->  t  =  w )
1110anbi1i 677 . . . . . . . . . 10  |-  ( ( t  e.  { w }  /\  g  e.  w
)  <->  ( t  =  w  /\  g  e.  w ) )
129, 11anbi12i 679 . . . . . . . . 9  |-  ( ( ( v  =  <. t ,  g >.  /\  v  e.  y )  /\  (
t  e.  { w }  /\  g  e.  w
) )  <->  ( (
v  =  <. t ,  g >.  /\  <. t ,  g >.  e.  y )  /\  ( t  =  w  /\  g  e.  w ) ) )
13 an4 798 . . . . . . . . . 10  |-  ( ( ( v  =  <. t ,  g >.  /\  <. t ,  g >.  e.  y )  /\  ( t  =  w  /\  g  e.  w ) )  <->  ( (
v  =  <. t ,  g >.  /\  t  =  w )  /\  ( <. t ,  g >.  e.  y  /\  g  e.  w ) ) )
14 ancom 438 . . . . . . . . . . 11  |-  ( ( v  =  <. t ,  g >.  /\  t  =  w )  <->  ( t  =  w  /\  v  =  <. t ,  g
>. ) )
15 ancom 438 . . . . . . . . . . 11  |-  ( (
<. t ,  g >.  e.  y  /\  g  e.  w )  <->  ( g  e.  w  /\  <. t ,  g >.  e.  y ) )
1614, 15anbi12i 679 . . . . . . . . . 10  |-  ( ( ( v  =  <. t ,  g >.  /\  t  =  w )  /\  ( <. t ,  g >.  e.  y  /\  g  e.  w ) )  <->  ( (
t  =  w  /\  v  =  <. t ,  g >. )  /\  (
g  e.  w  /\  <.
t ,  g >.  e.  y ) ) )
17 anass 631 . . . . . . . . . 10  |-  ( ( ( t  =  w  /\  v  =  <. t ,  g >. )  /\  ( g  e.  w  /\  <. t ,  g
>.  e.  y ) )  <-> 
( t  =  w  /\  ( v  = 
<. t ,  g >.  /\  ( g  e.  w  /\  <. t ,  g
>.  e.  y ) ) ) )
1813, 16, 173bitri 263 . . . . . . . . 9  |-  ( ( ( v  =  <. t ,  g >.  /\  <. t ,  g >.  e.  y )  /\  ( t  =  w  /\  g  e.  w ) )  <->  ( t  =  w  /\  (
v  =  <. t ,  g >.  /\  (
g  e.  w  /\  <.
t ,  g >.  e.  y ) ) ) )
197, 12, 183bitri 263 . . . . . . . 8  |-  ( ( ( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  /\  v  e.  y )  <->  ( t  =  w  /\  (
v  =  <. t ,  g >.  /\  (
g  e.  w  /\  <.
t ,  g >.  e.  y ) ) ) )
2019exbii 1592 . . . . . . 7  |-  ( E. t ( ( v  =  <. t ,  g
>.  /\  ( t  e. 
{ w }  /\  g  e.  w )
)  /\  v  e.  y )  <->  E. t
( t  =  w  /\  ( v  = 
<. t ,  g >.  /\  ( g  e.  w  /\  <. t ,  g
>.  e.  y ) ) ) )
21 vex 2959 . . . . . . . 8  |-  w  e. 
_V
22 opeq1 3984 . . . . . . . . . 10  |-  ( t  =  w  ->  <. t ,  g >.  =  <. w ,  g >. )
2322eqeq2d 2447 . . . . . . . . 9  |-  ( t  =  w  ->  (
v  =  <. t ,  g >.  <->  v  =  <. w ,  g >.
) )
2422eleq1d 2502 . . . . . . . . . 10  |-  ( t  =  w  ->  ( <. t ,  g >.  e.  y  <->  <. w ,  g
>.  e.  y ) )
2524anbi2d 685 . . . . . . . . 9  |-  ( t  =  w  ->  (
( g  e.  w  /\  <. t ,  g
>.  e.  y )  <->  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2623, 25anbi12d 692 . . . . . . . 8  |-  ( t  =  w  ->  (
( v  =  <. t ,  g >.  /\  (
g  e.  w  /\  <.
t ,  g >.  e.  y ) )  <->  ( v  =  <. w ,  g
>.  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) ) )
2721, 26ceqsexv 2991 . . . . . . 7  |-  ( E. t ( t  =  w  /\  ( v  =  <. t ,  g
>.  /\  ( g  e.  w  /\  <. t ,  g >.  e.  y ) ) )  <->  ( v  =  <. w ,  g
>.  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2820, 27bitri 241 . . . . . 6  |-  ( E. t ( ( v  =  <. t ,  g
>.  /\  ( t  e. 
{ w }  /\  g  e.  w )
)  /\  v  e.  y )  <->  ( v  =  <. w ,  g
>.  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2928exbii 1592 . . . . 5  |-  ( E. g E. t ( ( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  /\  v  e.  y )  <->  E. g
( v  =  <. w ,  g >.  /\  (
g  e.  w  /\  <.
w ,  g >.  e.  y ) ) )
306, 29bitr3i 243 . . . 4  |-  ( ( E. g E. t
( v  =  <. t ,  g >.  /\  (
t  e.  { w }  /\  g  e.  w
) )  /\  v  e.  y )  <->  E. g
( v  =  <. w ,  g >.  /\  (
g  e.  w  /\  <.
w ,  g >.  e.  y ) ) )
311, 5, 303bitri 263 . . 3  |-  ( v  e.  ( ( { w }  X.  w
)  i^i  y )  <->  E. g ( v  = 
<. w ,  g >.  /\  ( g  e.  w  /\  <. w ,  g
>.  e.  y ) ) )
3231eubii 2290 . 2  |-  ( E! v  v  e.  ( ( { w }  X.  w )  i^i  y
)  <->  E! v E. g
( v  =  <. w ,  g >.  /\  (
g  e.  w  /\  <.
w ,  g >.  e.  y ) ) )
3321euop2 4456 . 2  |-  ( E! v E. g ( v  =  <. w ,  g >.  /\  (
g  e.  w  /\  <.
w ,  g >.  e.  y ) )  <->  E! g
( g  e.  w  /\  <. w ,  g
>.  e.  y ) )
3432, 33bitri 241 1  |-  ( E! v  v  e.  ( ( { w }  X.  w )  i^i  y
)  <->  E! g ( g  e.  w  /\  <. w ,  g >.  e.  y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E!weu 2281    i^i cin 3319   {csn 3814   <.cop 3817    X. cxp 4876
This theorem is referenced by:  dfac5lem5  8008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-xp 4884
  Copyright terms: Public domain W3C validator