MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem3 Structured version   Unicode version

Theorem dfac5lem3 7998
Description: Lemma for dfac5 8001. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
Assertion
Ref Expression
dfac5lem3  |-  ( ( { w }  X.  w )  e.  A  <->  ( w  =/=  (/)  /\  w  e.  h ) )
Distinct variable groups:    w, u, t, h    w, A
Allowed substitution hints:    A( u, t, h)

Proof of Theorem dfac5lem3
StepHypRef Expression
1 snex 4397 . . . 4  |-  { w }  e.  _V
2 vex 2951 . . . 4  |-  w  e. 
_V
31, 2xpex 4982 . . 3  |-  ( { w }  X.  w
)  e.  _V
4 neeq1 2606 . . . 4  |-  ( u  =  ( { w }  X.  w )  -> 
( u  =/=  (/)  <->  ( {
w }  X.  w
)  =/=  (/) ) )
5 eqeq1 2441 . . . . 5  |-  ( u  =  ( { w }  X.  w )  -> 
( u  =  ( { t }  X.  t )  <->  ( {
w }  X.  w
)  =  ( { t }  X.  t
) ) )
65rexbidv 2718 . . . 4  |-  ( u  =  ( { w }  X.  w )  -> 
( E. t  e.  h  u  =  ( { t }  X.  t )  <->  E. t  e.  h  ( {
w }  X.  w
)  =  ( { t }  X.  t
) ) )
74, 6anbi12d 692 . . 3  |-  ( u  =  ( { w }  X.  w )  -> 
( ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) )  <->  ( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) ) )
83, 7elab 3074 . 2  |-  ( ( { w }  X.  w )  e.  {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <-> 
( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
9 dfac5lem.1 . . 3  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
109eleq2i 2499 . 2  |-  ( ( { w }  X.  w )  e.  A  <->  ( { w }  X.  w )  e.  {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) } )
11 xpeq2 4885 . . . . . 6  |-  ( w  =  (/)  ->  ( { w }  X.  w
)  =  ( { w }  X.  (/) ) )
12 xp0 5283 . . . . . 6  |-  ( { w }  X.  (/) )  =  (/)
1311, 12syl6eq 2483 . . . . 5  |-  ( w  =  (/)  ->  ( { w }  X.  w
)  =  (/) )
14 rneq 5087 . . . . . 6  |-  ( ( { w }  X.  w )  =  (/)  ->  ran  ( { w }  X.  w )  =  ran  (/) )
152snnz 3914 . . . . . . 7  |-  { w }  =/=  (/)
16 rnxp 5291 . . . . . . 7  |-  ( { w }  =/=  (/)  ->  ran  ( { w }  X.  w )  =  w )
1715, 16ax-mp 8 . . . . . 6  |-  ran  ( { w }  X.  w )  =  w
18 rn0 5119 . . . . . 6  |-  ran  (/)  =  (/)
1914, 17, 183eqtr3g 2490 . . . . 5  |-  ( ( { w }  X.  w )  =  (/)  ->  w  =  (/) )
2013, 19impbii 181 . . . 4  |-  ( w  =  (/)  <->  ( { w }  X.  w )  =  (/) )
2120necon3bii 2630 . . 3  |-  ( w  =/=  (/)  <->  ( { w }  X.  w )  =/=  (/) )
22 df-rex 2703 . . . 4  |-  ( E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t )  <->  E. t
( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
23 rneq 5087 . . . . . . . . . 10  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  ->  ran  ( { w }  X.  w )  =  ran  ( { t }  X.  t ) )
24 vex 2951 . . . . . . . . . . . 12  |-  t  e. 
_V
2524snnz 3914 . . . . . . . . . . 11  |-  { t }  =/=  (/)
26 rnxp 5291 . . . . . . . . . . 11  |-  ( { t }  =/=  (/)  ->  ran  ( { t }  X.  t )  =  t )
2725, 26ax-mp 8 . . . . . . . . . 10  |-  ran  ( { t }  X.  t )  =  t
2823, 17, 273eqtr3g 2490 . . . . . . . . 9  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  ->  w  =  t )
29 sneq 3817 . . . . . . . . . . 11  |-  ( w  =  t  ->  { w }  =  { t } )
3029xpeq1d 4893 . . . . . . . . . 10  |-  ( w  =  t  ->  ( { w }  X.  w )  =  ( { t }  X.  w ) )
31 xpeq2 4885 . . . . . . . . . 10  |-  ( w  =  t  ->  ( { t }  X.  w )  =  ( { t }  X.  t ) )
3230, 31eqtrd 2467 . . . . . . . . 9  |-  ( w  =  t  ->  ( { w }  X.  w )  =  ( { t }  X.  t ) )
3328, 32impbii 181 . . . . . . . 8  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  <->  w  =  t )
34 equcom 1692 . . . . . . . 8  |-  ( w  =  t  <->  t  =  w )
3533, 34bitri 241 . . . . . . 7  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  <->  t  =  w )
3635anbi2i 676 . . . . . 6  |-  ( ( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) )  <->  ( t  e.  h  /\  t  =  w ) )
37 ancom 438 . . . . . 6  |-  ( ( t  e.  h  /\  t  =  w )  <->  ( t  =  w  /\  t  e.  h )
)
3836, 37bitri 241 . . . . 5  |-  ( ( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) )  <->  ( t  =  w  /\  t  e.  h ) )
3938exbii 1592 . . . 4  |-  ( E. t ( t  e.  h  /\  ( { w }  X.  w
)  =  ( { t }  X.  t
) )  <->  E. t
( t  =  w  /\  t  e.  h
) )
40 elequ1 1728 . . . . 5  |-  ( t  =  w  ->  (
t  e.  h  <->  w  e.  h ) )
412, 40ceqsexv 2983 . . . 4  |-  ( E. t ( t  =  w  /\  t  e.  h )  <->  w  e.  h )
4222, 39, 413bitrri 264 . . 3  |-  ( w  e.  h  <->  E. t  e.  h  ( {
w }  X.  w
)  =  ( { t }  X.  t
) )
4321, 42anbi12i 679 . 2  |-  ( ( w  =/=  (/)  /\  w  e.  h )  <->  ( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
448, 10, 433bitr4i 269 1  |-  ( ( { w }  X.  w )  e.  A  <->  ( w  =/=  (/)  /\  w  e.  h ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   E.wrex 2698   (/)c0 3620   {csn 3806    X. cxp 4868   ran crn 4871
This theorem is referenced by:  dfac5lem5  8000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881
  Copyright terms: Public domain W3C validator