MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem5 Unicode version

Theorem dfac5lem5 7901
Description: Lemma for dfac5 7902. (Contributed by NM, 12-Apr-2004.)
Hypotheses
Ref Expression
dfac5lem.1  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
dfac5lem.2  |-  B  =  ( U. A  i^i  y )
dfac5lem.3  |-  ( ph  <->  A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) ) )
Assertion
Ref Expression
dfac5lem5  |-  ( ph  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
Distinct variable groups:    x, f,
z, y, w, v, u, t, h    z, B, w, f    x, A, y, z, w
Allowed substitution hints:    ph( x, y, z, w, v, u, t, f, h)    A( v, u, t, f, h)    B( x, y, v, u, t, h)

Proof of Theorem dfac5lem5
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dfac5lem.1 . . 3  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
2 dfac5lem.2 . . 3  |-  B  =  ( U. A  i^i  y )
3 dfac5lem.3 . . 3  |-  ( ph  <->  A. x ( ( A. z  e.  x  z  =/=  (/)  /\  A. z  e.  x  A. w  e.  x  ( z  =/=  w  ->  ( z  i^i  w )  =  (/) ) )  ->  E. y A. z  e.  x  E! v  v  e.  ( z  i^i  y
) ) )
41, 2, 3dfac5lem4 7900 . 2  |-  ( ph  ->  E. y A. z  e.  A  E! v 
v  e.  ( z  i^i  y ) )
5 simpr 447 . . . . . . . . . 10  |-  ( ( w  =/=  (/)  /\  w  e.  h )  ->  w  e.  h )
65a1i 10 . . . . . . . . 9  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( w  =/=  (/)  /\  w  e.  h
)  ->  w  e.  h ) )
7 ineq1 3451 . . . . . . . . . . . . 13  |-  ( z  =  ( { w }  X.  w )  -> 
( z  i^i  y
)  =  ( ( { w }  X.  w )  i^i  y
) )
87eleq2d 2433 . . . . . . . . . . . 12  |-  ( z  =  ( { w }  X.  w )  -> 
( v  e.  ( z  i^i  y )  <-> 
v  e.  ( ( { w }  X.  w )  i^i  y
) ) )
98eubidv 2225 . . . . . . . . . . 11  |-  ( z  =  ( { w }  X.  w )  -> 
( E! v  v  e.  ( z  i^i  y )  <->  E! v 
v  e.  ( ( { w }  X.  w )  i^i  y
) ) )
109rspccv 2966 . . . . . . . . . 10  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( { w }  X.  w )  e.  A  ->  E! v 
v  e.  ( ( { w }  X.  w )  i^i  y
) ) )
111dfac5lem3 7899 . . . . . . . . . 10  |-  ( ( { w }  X.  w )  e.  A  <->  ( w  =/=  (/)  /\  w  e.  h ) )
12 dfac5lem1 7897 . . . . . . . . . 10  |-  ( E! v  v  e.  ( ( { w }  X.  w )  i^i  y
)  <->  E! g ( g  e.  w  /\  <. w ,  g >.  e.  y ) )
1310, 11, 123imtr3g 260 . . . . . . . . 9  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( w  =/=  (/)  /\  w  e.  h
)  ->  E! g
( g  e.  w  /\  <. w ,  g
>.  e.  y ) ) )
146, 13jcad 519 . . . . . . . 8  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( w  =/=  (/)  /\  w  e.  h
)  ->  ( w  e.  h  /\  E! g ( g  e.  w  /\  <. w ,  g
>.  e.  y ) ) ) )
152eleq2i 2430 . . . . . . . . . . 11  |-  ( <.
w ,  g >.  e.  B  <->  <. w ,  g
>.  e.  ( U. A  i^i  y ) )
16 elin 3446 . . . . . . . . . . 11  |-  ( <.
w ,  g >.  e.  ( U. A  i^i  y )  <->  ( <. w ,  g >.  e.  U. A  /\  <. w ,  g
>.  e.  y ) )
171dfac5lem2 7898 . . . . . . . . . . . . 13  |-  ( <.
w ,  g >.  e.  U. A  <->  ( w  e.  h  /\  g  e.  w ) )
1817anbi1i 676 . . . . . . . . . . . 12  |-  ( (
<. w ,  g >.  e.  U. A  /\  <. w ,  g >.  e.  y )  <->  ( ( w  e.  h  /\  g  e.  w )  /\  <. w ,  g >.  e.  y ) )
19 anass 630 . . . . . . . . . . . 12  |-  ( ( ( w  e.  h  /\  g  e.  w
)  /\  <. w ,  g >.  e.  y
)  <->  ( w  e.  h  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2018, 19bitri 240 . . . . . . . . . . 11  |-  ( (
<. w ,  g >.  e.  U. A  /\  <. w ,  g >.  e.  y )  <->  ( w  e.  h  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2115, 16, 203bitri 262 . . . . . . . . . 10  |-  ( <.
w ,  g >.  e.  B  <->  ( w  e.  h  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) ) )
2221eubii 2226 . . . . . . . . 9  |-  ( E! g <. w ,  g
>.  e.  B  <->  E! g
( w  e.  h  /\  ( g  e.  w  /\  <. w ,  g
>.  e.  y ) ) )
23 euanv 2278 . . . . . . . . 9  |-  ( E! g ( w  e.  h  /\  ( g  e.  w  /\  <. w ,  g >.  e.  y ) )  <->  ( w  e.  h  /\  E! g ( g  e.  w  /\  <. w ,  g
>.  e.  y ) ) )
2422, 23bitr2i 241 . . . . . . . 8  |-  ( ( w  e.  h  /\  E! g ( g  e.  w  /\  <. w ,  g >.  e.  y ) )  <->  E! g <. w ,  g >.  e.  B )
2514, 24syl6ib 217 . . . . . . 7  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( w  =/=  (/)  /\  w  e.  h
)  ->  E! g <. w ,  g >.  e.  B ) )
26 euex 2240 . . . . . . . 8  |-  ( E! g <. w ,  g
>.  e.  B  ->  E. g <. w ,  g >.  e.  B )
27 nfeu1 2227 . . . . . . . . . 10  |-  F/ g E! g <. w ,  g >.  e.  B
28 nfv 1624 . . . . . . . . . 10  |-  F/ g ( B `  w
)  e.  w
2927, 28nfim 1820 . . . . . . . . 9  |-  F/ g ( E! g <.
w ,  g >.  e.  B  ->  ( B `
 w )  e.  w )
3021simprbi 450 . . . . . . . . . . 11  |-  ( <.
w ,  g >.  e.  B  ->  ( g  e.  w  /\  <. w ,  g >.  e.  y ) )
3130simpld 445 . . . . . . . . . 10  |-  ( <.
w ,  g >.  e.  B  ->  g  e.  w )
32 tz6.12 5652 . . . . . . . . . . . . 13  |-  ( (
<. w ,  g >.  e.  B  /\  E! g
<. w ,  g >.  e.  B )  ->  ( B `  w )  =  g )
3332eleq1d 2432 . . . . . . . . . . . 12  |-  ( (
<. w ,  g >.  e.  B  /\  E! g
<. w ,  g >.  e.  B )  ->  (
( B `  w
)  e.  w  <->  g  e.  w ) )
3433biimparc 473 . . . . . . . . . . 11  |-  ( ( g  e.  w  /\  ( <. w ,  g
>.  e.  B  /\  E! g <. w ,  g
>.  e.  B ) )  ->  ( B `  w )  e.  w
)
3534exp32 588 . . . . . . . . . 10  |-  ( g  e.  w  ->  ( <. w ,  g >.  e.  B  ->  ( E! g <. w ,  g
>.  e.  B  ->  ( B `  w )  e.  w ) ) )
3631, 35mpcom 32 . . . . . . . . 9  |-  ( <.
w ,  g >.  e.  B  ->  ( E! g <. w ,  g
>.  e.  B  ->  ( B `  w )  e.  w ) )
3729, 36exlimi 1809 . . . . . . . 8  |-  ( E. g <. w ,  g
>.  e.  B  ->  ( E! g <. w ,  g
>.  e.  B  ->  ( B `  w )  e.  w ) )
3826, 37mpcom 32 . . . . . . 7  |-  ( E! g <. w ,  g
>.  e.  B  ->  ( B `  w )  e.  w )
3925, 38syl6 29 . . . . . 6  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( ( w  =/=  (/)  /\  w  e.  h
)  ->  ( B `  w )  e.  w
) )
4039exp3acom23 1377 . . . . 5  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  ( w  e.  h  ->  ( w  =/=  (/)  ->  ( B `  w )  e.  w ) ) )
4140ralrimiv 2710 . . . 4  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  A. w  e.  h  ( w  =/=  (/)  ->  ( B `  w )  e.  w ) )
42 vex 2876 . . . . . . 7  |-  y  e. 
_V
4342inex2 4258 . . . . . 6  |-  ( U. A  i^i  y )  e. 
_V
442, 43eqeltri 2436 . . . . 5  |-  B  e. 
_V
45 fveq1 5631 . . . . . . . 8  |-  ( f  =  B  ->  (
f `  w )  =  ( B `  w ) )
4645eleq1d 2432 . . . . . . 7  |-  ( f  =  B  ->  (
( f `  w
)  e.  w  <->  ( B `  w )  e.  w
) )
4746imbi2d 307 . . . . . 6  |-  ( f  =  B  ->  (
( w  =/=  (/)  ->  (
f `  w )  e.  w )  <->  ( w  =/=  (/)  ->  ( B `  w )  e.  w
) ) )
4847ralbidv 2648 . . . . 5  |-  ( f  =  B  ->  ( A. w  e.  h  ( w  =/=  (/)  ->  (
f `  w )  e.  w )  <->  A. w  e.  h  ( w  =/=  (/)  ->  ( B `  w )  e.  w
) ) )
4944, 48spcev 2960 . . . 4  |-  ( A. w  e.  h  (
w  =/=  (/)  ->  ( B `  w )  e.  w )  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )
5041, 49syl 15 . . 3  |-  ( A. z  e.  A  E! v  v  e.  (
z  i^i  y )  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
5150exlimiv 1639 . 2  |-  ( E. y A. z  e.  A  E! v  v  e.  ( z  i^i  y )  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )
524, 51syl 15 1  |-  ( ph  ->  E. f A. w  e.  h  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1545   E.wex 1546    = wceq 1647    e. wcel 1715   E!weu 2217   {cab 2352    =/= wne 2529   A.wral 2628   E.wrex 2629   _Vcvv 2873    i^i cin 3237   (/)c0 3543   {csn 3729   <.cop 3732   U.cuni 3929    X. cxp 4790   ` cfv 5358
This theorem is referenced by:  dfac5  7902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-xp 4798  df-rel 4799  df-cnv 4800  df-dm 4802  df-rn 4803  df-iota 5322  df-fv 5366
  Copyright terms: Public domain W3C validator