MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8 Unicode version

Theorem dfac8 7761
Description: A proof of the equivalency of the Well Ordering Theorem weth 8122 and the Axiom of Choice ac7 8100. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8  |-  (CHOICE  <->  A. x E. r  r  We  x )
Distinct variable group:    x, r

Proof of Theorem dfac8
Dummy variables  f 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7748 . 2  |-  (CHOICE  <->  A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 vex 2791 . . . . . 6  |-  x  e. 
_V
32pwex 4193 . . . . . . 7  |-  ~P x  e.  _V
4 raleq 2736 . . . . . . . 8  |-  ( y  =  ~P x  -> 
( A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
54exbidv 1612 . . . . . . 7  |-  ( y  =  ~P x  -> 
( E. f A. z  e.  y  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  E. f A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
63, 5spcv 2874 . . . . . 6  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
7 dfac8a 7657 . . . . . 6  |-  ( x  e.  _V  ->  ( E. f A. z  e. 
~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  x  e.  dom  card ) )
82, 6, 7mpsyl 59 . . . . 5  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  x  e.  dom  card )
9 dfac8b 7658 . . . . 5  |-  ( x  e.  dom  card  ->  E. r  r  We  x
)
108, 9syl 15 . . . 4  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. r 
r  We  x )
1110alrimiv 1617 . . 3  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. r  r  We  x )
12 vex 2791 . . . . 5  |-  y  e. 
_V
1312uniex 4516 . . . . . 6  |-  U. y  e.  _V
14 weeq2 4382 . . . . . . 7  |-  ( x  =  U. y  -> 
( r  We  x  <->  r  We  U. y ) )
1514exbidv 1612 . . . . . 6  |-  ( x  =  U. y  -> 
( E. r  r  We  x  <->  E. r 
r  We  U. y
) )
1613, 15spcv 2874 . . . . 5  |-  ( A. x E. r  r  We  x  ->  E. r 
r  We  U. y
)
17 dfac8c 7660 . . . . 5  |-  ( y  e.  _V  ->  ( E. r  r  We  U. y  ->  E. f A. z  e.  y 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
1812, 16, 17mpsyl 59 . . . 4  |-  ( A. x E. r  r  We  x  ->  E. f A. z  e.  y 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
1918alrimiv 1617 . . 3  |-  ( A. x E. r  r  We  x  ->  A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2011, 19impbii 180 . 2  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. r 
r  We  x )
211, 20bitri 240 1  |-  (CHOICE  <->  A. x E. r  r  We  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788   (/)c0 3455   ~Pcpw 3625   U.cuni 3827    We wwe 4351   dom cdm 4689   ` cfv 5255   cardccrd 7568  CHOICEwac 7742
This theorem is referenced by:  dfac10  7763  weth  8122  dfac11  27160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-en 6864  df-card 7572  df-ac 7743
  Copyright terms: Public domain W3C validator