MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Unicode version

Theorem dfac8alem 7656
Description: Lemma for dfac8a 7657. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2  |-  F  = recs ( G )
dfac8alem.3  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
Assertion
Ref Expression
dfac8alem  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    f, g,
y, A    C, g    f, F, y
Allowed substitution hints:    C( y, f)    F( g)    G( y, f, g)

Proof of Theorem dfac8alem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
2 difss 3303 . . . . . . . . . . . 12  |-  ( A 
\  ( F "
x ) )  C_  A
3 elpw2g 4174 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  (
( A  \  ( F " x ) )  e.  ~P A  <->  ( A  \  ( F " x
) )  C_  A
) )
42, 3mpbiri 224 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  \  ( F "
x ) )  e. 
~P A )
5 neeq1 2454 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
y  =/=  (/)  <->  ( A  \  ( F " x
) )  =/=  (/) ) )
6 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
g `  y )  =  ( g `  ( A  \  ( F " x ) ) ) )
7 id 19 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  y  =  ( A  \ 
( F " x
) ) )
86, 7eleq12d 2351 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( g `  y
)  e.  y  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
95, 8imbi12d 311 . . . . . . . . . . . 12  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( y  =/=  (/)  ->  (
g `  y )  e.  y )  <->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
109rspcv 2880 . . . . . . . . . . 11  |-  ( ( A  \  ( F
" x ) )  e.  ~P A  -> 
( A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
114, 10syl 15 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
12113imp 1145 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( g `
 ( A  \ 
( F " x
) ) )  e.  ( A  \  ( F " x ) ) )
13 dfac8alem.2 . . . . . . . . . . . 12  |-  F  = recs ( G )
1413tfr2 6414 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
1513tfr1 6413 . . . . . . . . . . . . . 14  |-  F  Fn  On
16 fnfun 5341 . . . . . . . . . . . . . 14  |-  ( F  Fn  On  ->  Fun  F )
1715, 16ax-mp 8 . . . . . . . . . . . . 13  |-  Fun  F
18 vex 2791 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 resfunexg 5737 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  _V )  ->  ( F  |`  x )  e. 
_V )
2017, 18, 19mp2an 653 . . . . . . . . . . . 12  |-  ( F  |`  x )  e.  _V
21 rneq 4904 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ran  ( F  |`  x ) )
22 df-ima 4702 . . . . . . . . . . . . . . . 16  |-  ( F
" x )  =  ran  ( F  |`  x )
2321, 22syl6eqr 2333 . . . . . . . . . . . . . . 15  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ( F " x ) )
2423difeq2d 3294 . . . . . . . . . . . . . 14  |-  ( f  =  ( F  |`  x )  ->  ( A  \  ran  f )  =  ( A  \ 
( F " x
) ) )
2524fveq2d 5529 . . . . . . . . . . . . 13  |-  ( f  =  ( F  |`  x )  ->  (
g `  ( A  \  ran  f ) )  =  ( g `  ( A  \  ( F " x ) ) ) )
26 dfac8alem.3 . . . . . . . . . . . . 13  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
27 fvex 5539 . . . . . . . . . . . . 13  |-  ( g `
 ( A  \ 
( F " x
) ) )  e. 
_V
2825, 26, 27fvmpt 5602 . . . . . . . . . . . 12  |-  ( ( F  |`  x )  e.  _V  ->  ( G `  ( F  |`  x
) )  =  ( g `  ( A 
\  ( F "
x ) ) ) )
2920, 28ax-mp 8 . . . . . . . . . . 11  |-  ( G `
 ( F  |`  x ) )  =  ( g `  ( A  \  ( F "
x ) ) )
3014, 29syl6eq 2331 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( F `  x )  =  ( g `  ( A  \  ( F " x ) ) ) )
3130eleq1d 2349 . . . . . . . . 9  |-  ( x  e.  On  ->  (
( F `  x
)  e.  ( A 
\  ( F "
x ) )  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
3212, 31syl5ibrcom 213 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( x  e.  On  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
33323expia 1153 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( ( A  \ 
( F " x
) )  =/=  (/)  ->  (
x  e.  On  ->  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) ) )
3433com23 72 . . . . . 6  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( x  e.  On  ->  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) ) )
3534ralrimiv 2625 . . . . 5  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  ->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
3635ex 423 . . . 4  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A. x  e.  On  ( ( A 
\  ( F "
x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) ) )
3715tz7.49c 6458 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
3837ex 423 . . . . 5  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A ) )
3918f1oen 6882 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  ->  x  ~~  A )
40 isnumi 7579 . . . . . . 7  |-  ( ( x  e.  On  /\  x  ~~  A )  ->  A  e.  dom  card )
4139, 40sylan2 460 . . . . . 6  |-  ( ( x  e.  On  /\  ( F  |`  x ) : x -1-1-onto-> A )  ->  A  e.  dom  card )
4241rexlimiva 2662 . . . . 5  |-  ( E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A  ->  A  e.  dom  card )
4338, 42syl6 29 . . . 4  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  A  e.  dom  card ) )
4436, 43syld 40 . . 3  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
451, 44syl 15 . 2  |-  ( A  e.  C  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
4645exlimdv 1664 1  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077   Oncon0 4392   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255  recscrecs 6387    ~~ cen 6860   cardccrd 7568
This theorem is referenced by:  dfac8a  7657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-en 6864  df-card 7572
  Copyright terms: Public domain W3C validator