MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Unicode version

Theorem dfacacn 7783
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn  |-  (CHOICE  <->  A. xAC  x  =  _V )

Proof of Theorem dfacacn
Dummy variables  f 
g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . . 4  |-  x  e. 
_V
2 acacni 7782 . . . 4  |-  ( (CHOICE  /\  x  e.  _V )  -> AC  x  =  _V )
31, 2mpan2 652 . . 3  |-  (CHOICE  -> AC  x  =  _V )
43alrimiv 1621 . 2  |-  (CHOICE  ->  A. xAC  x  =  _V )
5 vex 2804 . . . . . . 7  |-  y  e. 
_V
6 difexg 4178 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  \  { (/) } )  e.  _V )
75, 6ax-mp 8 . . . . . 6  |-  ( y 
\  { (/) } )  e.  _V
8 acneq 7686 . . . . . . 7  |-  ( x  =  ( y  \  { (/) } )  -> AC  x  = AC  ( y  \  { (/)
} ) )
98eqeq1d 2304 . . . . . 6  |-  ( x  =  ( y  \  { (/) } )  -> 
(AC  x  =  _V  <-> AC  (
y  \  { (/) } )  =  _V ) )
107, 9spcv 2887 . . . . 5  |-  ( A. xAC  x  =  _V  -> AC  (
y  \  { (/) } )  =  _V )
115uniex 4532 . . . . . . 7  |-  U. y  e.  _V
12 id 19 . . . . . . 7  |-  (AC  (
y  \  { (/) } )  =  _V  -> AC  ( y 
\  { (/) } )  =  _V )
1311, 12syl5eleqr 2383 . . . . . 6  |-  (AC  (
y  \  { (/) } )  =  _V  ->  U. y  e. AC  ( y  \  { (/)
} ) )
14 eldifi 3311 . . . . . . . . 9  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  e.  y )
15 elssuni 3871 . . . . . . . . 9  |-  ( z  e.  y  ->  z  C_ 
U. y )
1614, 15syl 15 . . . . . . . 8  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  C_  U. y
)
17 eldifsni 3763 . . . . . . . 8  |-  ( z  e.  ( y  \  { (/) } )  -> 
z  =/=  (/) )
1816, 17jca 518 . . . . . . 7  |-  ( z  e.  ( y  \  { (/) } )  -> 
( z  C_  U. y  /\  z  =/=  (/) ) )
1918rgen 2621 . . . . . 6  |-  A. z  e.  ( y  \  { (/)
} ) ( z 
C_  U. y  /\  z  =/=  (/) )
20 acni2 7689 . . . . . 6  |-  ( ( U. y  e. AC  ( y 
\  { (/) } )  /\  A. z  e.  ( y  \  { (/)
} ) ( z 
C_  U. y  /\  z  =/=  (/) ) )  ->  E. g ( g : ( y  \  { (/)
} ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z ) )
2113, 19, 20sylancl 643 . . . . 5  |-  (AC  (
y  \  { (/) } )  =  _V  ->  E. g
( g : ( y  \  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z ) )
225mptex 5762 . . . . . . 7  |-  ( x  e.  y  |->  ( g `
 x ) )  e.  _V
23 simpr 447 . . . . . . . . 9  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  A. z  e.  (
y  \  { (/) } ) ( g `  z
)  e.  z )
24 eldifsn 3762 . . . . . . . . . . . 12  |-  ( z  e.  ( y  \  { (/) } )  <->  ( z  e.  y  /\  z  =/=  (/) ) )
2524imbi1i 315 . . . . . . . . . . 11  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z )  <->  ( (
z  e.  y  /\  z  =/=  (/) )  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) )
26 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
g `  x )  =  ( g `  z ) )
27 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( x  e.  y  |->  ( g `
 x ) )  =  ( x  e.  y  |->  ( g `  x ) )
28 fvex 5555 . . . . . . . . . . . . . . 15  |-  ( g `
 z )  e. 
_V
2926, 27, 28fvmpt 5618 . . . . . . . . . . . . . 14  |-  ( z  e.  y  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  =  ( g `
 z ) )
3014, 29syl 15 . . . . . . . . . . . . 13  |-  ( z  e.  ( y  \  { (/) } )  -> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  =  ( g `  z ) )
3130eleq1d 2362 . . . . . . . . . . . 12  |-  ( z  e.  ( y  \  { (/) } )  -> 
( ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z  <->  ( g `  z )  e.  z ) )
3231pm5.74i 236 . . . . . . . . . . 11  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z )  <->  ( z  e.  ( y  \  { (/)
} )  ->  (
g `  z )  e.  z ) )
33 impexp 433 . . . . . . . . . . 11  |-  ( ( ( z  e.  y  /\  z  =/=  (/) )  -> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  e.  z )  <->  ( z  e.  y  ->  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
3425, 32, 333bitr3i 266 . . . . . . . . . 10  |-  ( ( z  e.  ( y 
\  { (/) } )  ->  ( g `  z )  e.  z )  <->  ( z  e.  y  ->  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
3534ralbii2 2584 . . . . . . . . 9  |-  ( A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z  <->  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )
3623, 35sylib 188 . . . . . . . 8  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  A. z  e.  y 
( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) )
37 fvrn0 5566 . . . . . . . . . . 11  |-  ( g `
 x )  e.  ( ran  g  u. 
{ (/) } )
3837rgenw 2623 . . . . . . . . . 10  |-  A. x  e.  y  ( g `  x )  e.  ( ran  g  u.  { (/)
} )
3927fmpt 5697 . . . . . . . . . 10  |-  ( A. x  e.  y  (
g `  x )  e.  ( ran  g  u. 
{ (/) } )  <->  ( x  e.  y  |->  ( g `
 x ) ) : y --> ( ran  g  u.  { (/) } ) )
4038, 39mpbi 199 . . . . . . . . 9  |-  ( x  e.  y  |->  ( g `
 x ) ) : y --> ( ran  g  u.  { (/) } )
41 ffn 5405 . . . . . . . . 9  |-  ( ( x  e.  y  |->  ( g `  x ) ) : y --> ( ran  g  u.  { (/)
} )  ->  (
x  e.  y  |->  ( g `  x ) )  Fn  y )
4240, 41ax-mp 8 . . . . . . . 8  |-  ( x  e.  y  |->  ( g `
 x ) )  Fn  y
4336, 42jctil 523 . . . . . . 7  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  -> 
( ( x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) ) )
44 fneq1 5349 . . . . . . . . 9  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( f  Fn  y  <->  ( x  e.  y  |->  ( g `  x ) )  Fn  y ) )
45 fveq1 5540 . . . . . . . . . . . 12  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( f `  z
)  =  ( ( x  e.  y  |->  ( g `  x ) ) `  z ) )
4645eleq1d 2362 . . . . . . . . . . 11  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )
4746imbi2d 307 . . . . . . . . . 10  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( x  e.  y  |->  ( g `
 x ) ) `
 z )  e.  z ) ) )
4847ralbidv 2576 . . . . . . . . 9  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  y  ( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) ) )
4944, 48anbi12d 691 . . . . . . . 8  |-  ( f  =  ( x  e.  y  |->  ( g `  x ) )  -> 
( ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
( x  e.  y 
|->  ( g `  x
) ) `  z
)  e.  z ) ) ) )
5049spcegv 2882 . . . . . . 7  |-  ( ( x  e.  y  |->  ( g `  x ) )  e.  _V  ->  ( ( ( x  e.  y  |->  ( g `  x ) )  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( (
x  e.  y  |->  ( g `  x ) ) `  z )  e.  z ) )  ->  E. f ( f  Fn  y  /\  A. z  e.  y  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) ) )
5122, 43, 50mpsyl 59 . . . . . 6  |-  ( ( g : ( y 
\  { (/) } ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5251exlimiv 1624 . . . . 5  |-  ( E. g ( g : ( y  \  { (/)
} ) --> U. y  /\  A. z  e.  ( y  \  { (/) } ) ( g `  z )  e.  z )  ->  E. f
( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
5310, 21, 523syl 18 . . . 4  |-  ( A. xAC  x  =  _V  ->  E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5453alrimiv 1621 . . 3  |-  ( A. xAC  x  =  _V  ->  A. y E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
55 dfac4 7765 . . 3  |-  (CHOICE  <->  A. y E. f ( f  Fn  y  /\  A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5654, 55sylibr 203 . 2  |-  ( A. xAC  x  =  _V  -> CHOICE )
574, 56impbii 180 1  |-  (CHOICE  <->  A. xAC  x  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    \ cdif 3162    u. cun 3163    C_ wss 3165   (/)c0 3468   {csn 3653   U.cuni 3843    e. cmpt 4093   ran crn 4706    Fn wfn 5266   -->wf 5267   ` cfv 5271  AC wacn 7587  CHOICEwac 7758
This theorem is referenced by:  dfac13  7784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-card 7588  df-acn 7591  df-ac 7759
  Copyright terms: Public domain W3C validator