MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfarea Unicode version

Theorem dfarea 20668
Description: Rewrite df-area 20664 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dfarea  |- area  =  ( s  e.  dom area  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )
Distinct variable group:    x, s

Proof of Theorem dfarea
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-area 20664 . 2  |- area  =  ( s  e.  { y  e.  ~P ( RR 
X.  RR )  |  ( A. x  e.  RR  ( y " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( y
" { x }
) ) )  e.  L ^1 ) } 
|->  S. RR ( vol `  ( s " {
x } ) )  _d x )
2 itgex 19531 . . . 4  |-  S. RR ( vol `  ( s
" { x }
) )  _d x  e.  _V
32, 1dmmpti 5516 . . 3  |-  dom area  =  {
y  e.  ~P ( RR  X.  RR )  |  ( A. x  e.  RR  ( y " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( y
" { x }
) ) )  e.  L ^1 ) }
4 mpteq1 4232 . . 3  |-  ( dom area  =  { y  e.  ~P ( RR  X.  RR )  |  ( A. x  e.  RR  (
y " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  (
y " { x } ) ) )  e.  L ^1 ) }  ->  ( s  e.  dom area  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )  =  ( s  e.  { y  e. 
~P ( RR  X.  RR )  |  ( A. x  e.  RR  ( y " {
x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  (
y " { x } ) ) )  e.  L ^1 ) }  |->  S. RR ( vol `  ( s
" { x }
) )  _d x ) )
53, 4ax-mp 8 . 2  |-  ( s  e.  dom area  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )  =  ( s  e.  { y  e. 
~P ( RR  X.  RR )  |  ( A. x  e.  RR  ( y " {
x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  (
y " { x } ) ) )  e.  L ^1 ) }  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )
61, 5eqtr4i 2412 1  |- area  =  ( s  e.  dom area  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2651   {crab 2655   ~Pcpw 3744   {csn 3759    e. cmpt 4209    X. cxp 4818   `'ccnv 4819   dom cdm 4820   "cima 4823   ` cfv 5396   RRcr 8924   volcvol 19229   L ^1cibl 19378   S.citg 19379  areacarea 20663
This theorem is referenced by:  areaf  20669  areaval  20672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fn 5399  df-sum 12409  df-itg 19385  df-area 20664
  Copyright terms: Public domain W3C validator