Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfateq12d Structured version   Unicode version

Theorem dfateq12d 27969
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
dfateq12d.1  |-  ( ph  ->  F  =  G )
dfateq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
dfateq12d  |-  ( ph  ->  ( F defAt  A  <->  G defAt  B ) )

Proof of Theorem dfateq12d
StepHypRef Expression
1 dfateq12d.2 . . . 4  |-  ( ph  ->  A  =  B )
2 dfateq12d.1 . . . . 5  |-  ( ph  ->  F  =  G )
32dmeqd 5072 . . . 4  |-  ( ph  ->  dom  F  =  dom  G )
41, 3eleq12d 2504 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
B  e.  dom  G
) )
51sneqd 3827 . . . . 5  |-  ( ph  ->  { A }  =  { B } )
62, 5reseq12d 5147 . . . 4  |-  ( ph  ->  ( F  |`  { A } )  =  ( G  |`  { B } ) )
76funeqd 5475 . . 3  |-  ( ph  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( G  |`  { B } ) ) )
84, 7anbi12d 692 . 2  |-  ( ph  ->  ( ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  <->  ( B  e.  dom  G  /\  Fun  ( G  |`  { B } ) ) ) )
9 df-dfat 27950 . 2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
10 df-dfat 27950 . 2  |-  ( G defAt 
B  <->  ( B  e. 
dom  G  /\  Fun  ( G  |`  { B }
) ) )
118, 9, 103bitr4g 280 1  |-  ( ph  ->  ( F defAt  A  <->  G defAt  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {csn 3814   dom cdm 4878    |` cres 4880   Fun wfun 5448   defAt wdfat 27947
This theorem is referenced by:  afveq12d  27973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-res 4890  df-fun 5456  df-dfat 27950
  Copyright terms: Public domain W3C validator