MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2 Structured version   Unicode version

Theorem dfco2 5361
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfco2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5360 . 2  |-  Rel  ( A  o.  B )
2 reliun 4987 . . 3  |-  ( Rel  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  A. x  e.  _V  Rel  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
3 relxp 4975 . . . 4  |-  Rel  (
( `' B " { x } )  X.  ( A " { x } ) )
43a1i 11 . . 3  |-  ( x  e.  _V  ->  Rel  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
52, 4mprgbir 2768 . 2  |-  Rel  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) )
6 vex 2951 . . . 4  |-  y  e. 
_V
7 vex 2951 . . . 4  |-  z  e. 
_V
8 opelco2g 5032 . . . 4  |-  ( ( y  e.  _V  /\  z  e.  _V )  ->  ( <. y ,  z
>.  e.  ( A  o.  B )  <->  E. x
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) ) )
96, 7, 8mp2an 654 . . 3  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  E. x ( <.
y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
10 eliun 4089 . . . 4  |-  ( <.
y ,  z >.  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x  e.  _V  <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
11 rexv 2962 . . . 4  |-  ( E. x  e.  _V  <. y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x <. y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
12 opelxp 4900 . . . . . 6  |-  ( <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  ( y  e.  ( `' B " { x } )  /\  z  e.  ( A " { x } ) ) )
13 vex 2951 . . . . . . . . 9  |-  x  e. 
_V
1413, 6elimasn 5221 . . . . . . . 8  |-  ( y  e.  ( `' B " { x } )  <->  <. x ,  y >.  e.  `' B )
1513, 6opelcnv 5046 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  `' B  <->  <. y ,  x >.  e.  B )
1614, 15bitri 241 . . . . . . 7  |-  ( y  e.  ( `' B " { x } )  <->  <. y ,  x >.  e.  B )
1713, 7elimasn 5221 . . . . . . 7  |-  ( z  e.  ( A " { x } )  <->  <. x ,  z >.  e.  A )
1816, 17anbi12i 679 . . . . . 6  |-  ( ( y  e.  ( `' B " { x } )  /\  z  e.  ( A " {
x } ) )  <-> 
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
1912, 18bitri 241 . . . . 5  |-  ( <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  ( <. y ,  x >.  e.  B  /\  <. x ,  z
>.  e.  A ) )
2019exbii 1592 . . . 4  |-  ( E. x <. y ,  z
>.  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
2110, 11, 203bitrri 264 . . 3  |-  ( E. x ( <. y ,  x >.  e.  B  /\  <. x ,  z
>.  e.  A )  <->  <. y ,  z >.  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
229, 21bitri 241 . 2  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  <. y ,  z
>.  e.  U_ x  e. 
_V  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
231, 5, 22eqrelriiv 4962 1  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2698   _Vcvv 2948   {csn 3806   <.cop 3809   U_ciun 4085    X. cxp 4868   `'ccnv 4869   "cima 4873    o. ccom 4874   Rel wrel 4875
This theorem is referenced by:  dfco2a  5362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-iun 4087  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
  Copyright terms: Public domain W3C validator