Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif2 Structured version   Unicode version

Theorem dfdif2 3329
 Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2
Distinct variable groups:   ,   ,

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3323 . 2
2 df-rab 2714 . 2
31, 2eqtr4i 2459 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 359   wceq 1652   wcel 1725  cab 2422  crab 2709   cdif 3317 This theorem is referenced by:  difeq1  3458  difeq2  3459  nfdif  3468  difidALT  3697  ordintdif  4630  kmlem3  8032  incexc2  12618  cnambfre  26255 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-cleq 2429  df-rab 2714  df-dif 3323
 Copyright terms: Public domain W3C validator