Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm3 Structured version   Unicode version

Theorem dfdm3 5060
 Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3
Distinct variable group:   ,,

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4890 . 2
2 df-br 4215 . . . 4
32exbii 1593 . . 3
43abbii 2550 . 2
51, 4eqtri 2458 1
 Colors of variables: wff set class Syntax hints:  wex 1551   wceq 1653   wcel 1726  cab 2424  cop 3819   class class class wbr 4214   cdm 4880 This theorem is referenced by:  cnextf  18099  csbdmg  27960 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-br 4215  df-dm 4890
 Copyright terms: Public domain W3C validator