Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm5 Unicode version

Theorem dfdm5 25149
Description: Definition of domain in terms of  1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfdm5  |-  dom  A  =  ( ( 1st  |`  ( _V  X.  _V ) ) " A
)

Proof of Theorem dfdm5
Dummy variables  p  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1748 . . . 4  |-  ( E. y E. p E. z ( p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) )  <->  E. p E. y E. z ( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
) )
2 opex 4361 . . . . . . . 8  |-  <. z ,  y >.  e.  _V
3 breq1 4149 . . . . . . . . . 10  |-  ( p  =  <. z ,  y
>.  ->  ( p 1st x  <->  <. z ,  y
>. 1st x ) )
4 eleq1 2440 . . . . . . . . . 10  |-  ( p  =  <. z ,  y
>.  ->  ( p  e.  A  <->  <. z ,  y
>.  e.  A ) )
53, 4anbi12d 692 . . . . . . . . 9  |-  ( p  =  <. z ,  y
>.  ->  ( ( p 1st x  /\  p  e.  A )  <->  ( <. z ,  y >. 1st x  /\  <. z ,  y
>.  e.  A ) ) )
6 vex 2895 . . . . . . . . . . . 12  |-  z  e. 
_V
7 vex 2895 . . . . . . . . . . . 12  |-  y  e. 
_V
8 vex 2895 . . . . . . . . . . . 12  |-  x  e. 
_V
96, 7, 8br1steq 25147 . . . . . . . . . . 11  |-  ( <.
z ,  y >. 1st x  <->  x  =  z
)
10 equcom 1687 . . . . . . . . . . 11  |-  ( x  =  z  <->  z  =  x )
119, 10bitri 241 . . . . . . . . . 10  |-  ( <.
z ,  y >. 1st x  <->  z  =  x )
1211anbi1i 677 . . . . . . . . 9  |-  ( (
<. z ,  y >. 1st x  /\  <. z ,  y >.  e.  A
)  <->  ( z  =  x  /\  <. z ,  y >.  e.  A
) )
135, 12syl6bb 253 . . . . . . . 8  |-  ( p  =  <. z ,  y
>.  ->  ( ( p 1st x  /\  p  e.  A )  <->  ( z  =  x  /\  <. z ,  y >.  e.  A
) ) )
142, 13ceqsexv 2927 . . . . . . 7  |-  ( E. p ( p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) )  <->  ( z  =  x  /\  <. z ,  y >.  e.  A
) )
1514exbii 1589 . . . . . 6  |-  ( E. z E. p ( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
)  <->  E. z ( z  =  x  /\  <. z ,  y >.  e.  A
) )
16 excom 1748 . . . . . 6  |-  ( E. z E. p ( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
)  <->  E. p E. z
( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
) )
17 opeq1 3919 . . . . . . . 8  |-  ( z  =  x  ->  <. z ,  y >.  =  <. x ,  y >. )
1817eleq1d 2446 . . . . . . 7  |-  ( z  =  x  ->  ( <. z ,  y >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
198, 18ceqsexv 2927 . . . . . 6  |-  ( E. z ( z  =  x  /\  <. z ,  y >.  e.  A
)  <->  <. x ,  y
>.  e.  A )
2015, 16, 193bitr3ri 268 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  E. p E. z
( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
) )
2120exbii 1589 . . . 4  |-  ( E. y <. x ,  y
>.  e.  A  <->  E. y E. p E. z ( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
) )
22 ancom 438 . . . . . 6  |-  ( ( p  e.  A  /\  p ( 1st  |`  ( _V  X.  _V ) ) x )  <->  ( p
( 1st  |`  ( _V 
X.  _V ) ) x  /\  p  e.  A
) )
23 anass 631 . . . . . . 7  |-  ( ( ( E. y E. z  p  =  <. z ,  y >.  /\  p 1st x )  /\  p  e.  A )  <->  ( E. y E. z  p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) ) )
248brres 5085 . . . . . . . . 9  |-  ( p ( 1st  |`  ( _V  X.  _V ) ) x  <->  ( p 1st x  /\  p  e.  ( _V  X.  _V ) ) )
25 ancom 438 . . . . . . . . . 10  |-  ( ( p 1st x  /\  p  e.  ( _V  X.  _V ) )  <->  ( p  e.  ( _V  X.  _V )  /\  p 1st x
) )
26 elvv 4869 . . . . . . . . . . . 12  |-  ( p  e.  ( _V  X.  _V )  <->  E. z E. y  p  =  <. z ,  y >. )
27 excom 1748 . . . . . . . . . . . 12  |-  ( E. z E. y  p  =  <. z ,  y
>. 
<->  E. y E. z  p  =  <. z ,  y >. )
2826, 27bitri 241 . . . . . . . . . . 11  |-  ( p  e.  ( _V  X.  _V )  <->  E. y E. z  p  =  <. z ,  y >. )
2928anbi1i 677 . . . . . . . . . 10  |-  ( ( p  e.  ( _V 
X.  _V )  /\  p 1st x )  <->  ( E. y E. z  p  = 
<. z ,  y >.  /\  p 1st x ) )
3025, 29bitri 241 . . . . . . . . 9  |-  ( ( p 1st x  /\  p  e.  ( _V  X.  _V ) )  <->  ( E. y E. z  p  = 
<. z ,  y >.  /\  p 1st x ) )
3124, 30bitri 241 . . . . . . . 8  |-  ( p ( 1st  |`  ( _V  X.  _V ) ) x  <->  ( E. y E. z  p  =  <. z ,  y >.  /\  p 1st x ) )
3231anbi1i 677 . . . . . . 7  |-  ( ( p ( 1st  |`  ( _V  X.  _V ) ) x  /\  p  e.  A )  <->  ( ( E. y E. z  p  =  <. z ,  y
>.  /\  p 1st x
)  /\  p  e.  A ) )
33 19.41vv 1914 . . . . . . 7  |-  ( E. y E. z ( p  =  <. z ,  y >.  /\  (
p 1st x  /\  p  e.  A )
)  <->  ( E. y E. z  p  =  <. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) ) )
3423, 32, 333bitr4i 269 . . . . . 6  |-  ( ( p ( 1st  |`  ( _V  X.  _V ) ) x  /\  p  e.  A )  <->  E. y E. z ( p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) ) )
3522, 34bitri 241 . . . . 5  |-  ( ( p  e.  A  /\  p ( 1st  |`  ( _V  X.  _V ) ) x )  <->  E. y E. z ( p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) ) )
3635exbii 1589 . . . 4  |-  ( E. p ( p  e.  A  /\  p ( 1st  |`  ( _V  X.  _V ) ) x )  <->  E. p E. y E. z ( p  = 
<. z ,  y >.  /\  ( p 1st x  /\  p  e.  A
) ) )
371, 21, 363bitr4i 269 . . 3  |-  ( E. y <. x ,  y
>.  e.  A  <->  E. p
( p  e.  A  /\  p ( 1st  |`  ( _V  X.  _V ) ) x ) )
388eldm2 5001 . . 3  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
398elima2 5142 . . 3  |-  ( x  e.  ( ( 1st  |`  ( _V  X.  _V ) ) " A
)  <->  E. p ( p  e.  A  /\  p
( 1st  |`  ( _V 
X.  _V ) ) x ) )
4037, 38, 393bitr4i 269 . 2  |-  ( x  e.  dom  A  <->  x  e.  ( ( 1st  |`  ( _V  X.  _V ) )
" A ) )
4140eqriv 2377 1  |-  dom  A  =  ( ( 1st  |`  ( _V  X.  _V ) ) " A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   _Vcvv 2892   <.cop 3753   class class class wbr 4146    X. cxp 4809   dom cdm 4811    |` cres 4813   "cima 4814   1stc1st 6279
This theorem is referenced by:  brdomain  25489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fo 5393  df-fv 5395  df-1st 6281
  Copyright terms: Public domain W3C validator