MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Unicode version

Theorem dfdom2 6887
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2  |-  ~<_  =  ( 
~<  u.  ~~  )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 6866 . . 3  |-  ~<  =  (  ~<_  \  ~~  )
21uneq2i 3326 . 2  |-  (  ~~  u.  ~<  )  =  ( 
~~  u.  (  ~<_  \  ~~  ) )
3 uncom 3319 . 2  |-  (  ~~  u.  ~<  )  =  ( 
~<  u.  ~~  )
4 enssdom 6886 . . 3  |-  ~~  C_  ~<_
5 undif 3534 . . 3  |-  (  ~~  C_  ~<_  <-> 
(  ~~  u.  (  ~<_  \ 
~~  ) )  =  ~<_  )
64, 5mpbi 199 . 2  |-  (  ~~  u.  (  ~<_  \  ~~  )
)  =  ~<_
72, 3, 63eqtr3ri 2312 1  |-  ~<_  =  ( 
~<  u.  ~~  )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    \ cdif 3149    u. cun 3150    C_ wss 3152    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862
This theorem is referenced by:  brdom2  6891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-f1o 5262  df-en 6864  df-dom 6865  df-sdom 6866
  Copyright terms: Public domain W3C validator