MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfec2 Unicode version

Theorem dfec2 6845
Description: Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    V( y)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 6844 . 2  |-  [ A ] R  =  ( R " { A }
)
2 imasng 5167 . 2  |-  ( A  e.  V  ->  ( R " { A }
)  =  { y  |  A R y } )
31, 2syl5eq 2432 1  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {cab 2374   {csn 3758   class class class wbr 4154   "cima 4822   [cec 6840
This theorem is referenced by:  eqglact  14919  tgpconcompeqg  18063  fvline  25793  ellines  25801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-xp 4825  df-cnv 4827  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-ec 6844
  Copyright terms: Public domain W3C validator