MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfer2 Structured version   Unicode version

Theorem dfer2 6906
Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
dfer2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Distinct variable group:    x, y, z, R
Allowed substitution hints:    A( x, y, z)

Proof of Theorem dfer2
StepHypRef Expression
1 df-er 6905 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2 cnvsym 5248 . . . . 5  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
3 cotr 5246 . . . . 5  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
42, 3anbi12i 679 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) ) )
5 unss 3521 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( `' R  u.  ( R  o.  R )
)  C_  R )
6 19.28v 1918 . . . . . . . 8  |-  ( A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
76albii 1575 . . . . . . 7  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
8 19.26 1603 . . . . . . 7  |-  ( A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
97, 8bitri 241 . . . . . 6  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
109albii 1575 . . . . 5  |-  ( A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 19.26 1603 . . . . 5  |-  ( A. x ( A. y
( x R y  ->  y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. x A. y ( x R y  ->  y R x )  /\  A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z ) ) )
1210, 11bitr2i 242 . . . 4  |-  ( ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
134, 5, 123bitr3i 267 . . 3  |-  ( ( `' R  u.  ( R  o.  R )
)  C_  R  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
14133anbi3i 1146 . 2  |-  ( ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
151, 14bitri 241 1  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    u. cun 3318    C_ wss 3320   class class class wbr 4212   `'ccnv 4877   dom cdm 4878    o. ccom 4882   Rel wrel 4883    Er wer 6902
This theorem is referenced by:  iserd  6931  trer  26319  riscer  26604  prter1  26728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-er 6905
  Copyright terms: Public domain W3C validator