MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfer2 Unicode version

Theorem dfer2 6661
Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
dfer2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Distinct variable group:    x, y, z, R
Allowed substitution hints:    A( x, y, z)

Proof of Theorem dfer2
StepHypRef Expression
1 df-er 6660 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2 cnvsym 5057 . . . . 5  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
3 cotr 5055 . . . . 5  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
42, 3anbi12i 678 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) ) )
5 unss 3349 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( `' R  u.  ( R  o.  R )
)  C_  R )
6 19.28v 1836 . . . . . . . 8  |-  ( A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
76albii 1553 . . . . . . 7  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
8 19.26 1580 . . . . . . 7  |-  ( A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
97, 8bitri 240 . . . . . 6  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
109albii 1553 . . . . 5  |-  ( A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 19.26 1580 . . . . 5  |-  ( A. x ( A. y
( x R y  ->  y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. x A. y ( x R y  ->  y R x )  /\  A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z ) ) )
1210, 11bitr2i 241 . . . 4  |-  ( ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
134, 5, 123bitr3i 266 . . 3  |-  ( ( `' R  u.  ( R  o.  R )
)  C_  R  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
14133anbi3i 1144 . 2  |-  ( ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
151, 14bitri 240 1  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    u. cun 3150    C_ wss 3152   class class class wbr 4023   `'ccnv 4688   dom cdm 4689    o. ccom 4693   Rel wrel 4694    Er wer 6657
This theorem is referenced by:  iserd  6686  bosser  26167  trer  26227  riscer  26619  prter1  26747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-er 6660
  Copyright terms: Public domain W3C validator