MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13 Structured version   Unicode version

Theorem dff13 6005
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable groups:    x, y, A    x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff13
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dff12 5639 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. z E* x  x F z ) )
2 ffn 5592 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
3 vex 2960 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4 vex 2960 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
53, 4breldm 5075 . . . . . . . . . . . . . 14  |-  ( x F z  ->  x  e.  dom  F )
6 fndm 5545 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  dom  F  =  A )
76eleq2d 2504 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  dom  F  <->  x  e.  A ) )
85, 7syl5ib 212 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x F z  ->  x  e.  A )
)
9 vex 2960 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
109, 4breldm 5075 . . . . . . . . . . . . . 14  |-  ( y F z  ->  y  e.  dom  F )
116eleq2d 2504 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
y  e.  dom  F  <->  y  e.  A ) )
1210, 11syl5ib 212 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
y F z  -> 
y  e.  A ) )
138, 12anim12d 548 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  ->  ( x  e.  A  /\  y  e.  A ) ) )
1413pm4.71rd 618 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
15 eqcom 2439 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  x )  <->  ( F `  x )  =  z )
16 fnbrfvb 5768 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  z  <-> 
x F z ) )
1715, 16syl5bb 250 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( z  =  ( F `  x )  <-> 
x F z ) )
18 eqcom 2439 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  <->  ( F `  y )  =  z )
19 fnbrfvb 5768 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  y )  =  z  <-> 
y F z ) )
2018, 19syl5bb 250 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( z  =  ( F `  y )  <-> 
y F z ) )
2117, 20bi2anan9 845 . . . . . . . . . . . . 13  |-  ( ( ( F  Fn  A  /\  x  e.  A
)  /\  ( F  Fn  A  /\  y  e.  A ) )  -> 
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2221anandis 805 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2322pm5.32da 624 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
2414, 23bitr4d 249 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) ) ) )
2524imbi1d 310 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
( x  e.  A  /\  y  e.  A
)  /\  ( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y ) ) )
26 impexp 435 . . . . . . . . 9  |-  ( ( ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
2725, 26syl6bb 254 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
2827albidv 1636 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
29 19.21v 1914 . . . . . . . 8  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  A. z ( ( z  =  ( F `
 x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
) )
30 19.23v 1915 . . . . . . . . . 10  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
31 fvex 5743 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
3231eqvinc 3064 . . . . . . . . . . 11  |-  ( ( F `  x )  =  ( F `  y )  <->  E. z
( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )
3332imbi1i 317 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
3430, 33bitr4i 245 . . . . . . . . 9  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3534imbi2i 305 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  ->  A. z
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3629, 35bitri 242 . . . . . . 7  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3728, 36syl6bb 254 . . . . . 6  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
38372albidv 1638 . . . . 5  |-  ( F  Fn  A  ->  ( A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
39 breq1 4216 . . . . . . . 8  |-  ( x  =  y  ->  (
x F z  <->  y F
z ) )
4039mo4 2315 . . . . . . 7  |-  ( E* x  x F z  <->  A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y ) )
4140albii 1576 . . . . . 6  |-  ( A. z E* x  x F z  <->  A. z A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y )
)
42 alrot3 1754 . . . . . 6  |-  ( A. z A. x A. y
( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y ) )
4341, 42bitri 242 . . . . 5  |-  ( A. z E* x  x F z  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )
)
44 r2al 2743 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4538, 43, 443bitr4g 281 . . . 4  |-  ( F  Fn  A  ->  ( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
462, 45syl 16 . . 3  |-  ( F : A --> B  -> 
( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4746pm5.32i 620 . 2  |-  ( ( F : A --> B  /\  A. z E* x  x F z )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
481, 47bitri 242 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   E*wmo 2283   A.wral 2706   class class class wbr 4213   dom cdm 4879    Fn wfn 5450   -->wf 5451   -1-1->wf1 5452   ` cfv 5455
This theorem is referenced by:  f1veqaeq  6006  dff13f  6007  dff1o6  6014  fcof1  6021  soisoi  6049  f1o2ndf1  6455  fnwelem  6462  smo11  6627  tz7.48lem  6699  omsmo  6898  unxpdomlem3  7316  unfilem2  7373  fofinf1o  7388  inf3lem6  7589  r111  7702  fseqenlem1  7906  fodomacn  7938  alephf1  7967  alephiso  7980  ackbij1lem17  8117  infpssrlem5  8188  fin23lem28  8221  fin1a2lem2  8282  fin1a2lem4  8284  axcc2lem  8317  domtriomlem  8323  cnref1o  10608  injresinj  11201  om2uzf1oi  11294  reeff1  12722  bitsf1  12959  crt  13168  eulerthlem2  13172  1arith  13296  vdwlem12  13361  xpsff1o  13794  setcmon  14243  yoniso  14383  ghmf1  15035  orbsta  15091  odf1  15199  mvrf1  16490  ply1sclf1  16681  znf1o  16833  cygznlem3  16851  ist0-4  17762  ovolicc2lem4  19417  recosf1o  20438  efif1olem4  20448  basellem4  20867  dvdsmulf1o  20980  lgsqrlem2  21127  lgseisenlem2  21135  wlkntrllem3  21562  wlkdvspthlem  21608  fargshiftf1  21625  constr3trllem2  21639  pjmf1  23219  unopf1o  23420  kerf1hrm  24263  erdszelem9  24886  ghomf1olem  25106  axlowdimlem15  25896  f1opr  26427  grpokerinj  26561  dnnumch3  27123  uvcf1  27219  lindff1  27268  dff14a  28079  frgrancvvdeqlemB  28428  cdleme50f1  31341  dihf11  32066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fv 5463
  Copyright terms: Public domain W3C validator