MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff4 Unicode version

Theorem dff4 5674
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff4  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  e.  B  x F
y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dff4
StepHypRef Expression
1 dff3 5673 . 2  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  x F y ) )
2 df-br 4024 . . . . . . . 8  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
3 ssel 3174 . . . . . . . . 9  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  ( A  X.  B ) ) )
4 opelxp2 4723 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  e.  B )
53, 4syl6 29 . . . . . . . 8  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  y  e.  B ) )
62, 5syl5bi 208 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  -> 
y  e.  B ) )
76pm4.71rd 616 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  <->  ( y  e.  B  /\  x F y ) ) )
87eubidv 2151 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y ( y  e.  B  /\  x F y ) ) )
9 df-reu 2550 . . . . 5  |-  ( E! y  e.  B  x F y  <->  E! y
( y  e.  B  /\  x F y ) )
108, 9syl6bbr 254 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y  e.  B  x F y ) )
1110ralbidv 2563 . . 3  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x  e.  A  E! y  x F
y  <->  A. x  e.  A  E! y  e.  B  x F y ) )
1211pm5.32i 618 . 2  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  <-> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
131, 12bitri 240 1  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  e.  B  x F
y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   E!weu 2143   A.wral 2543   E!wreu 2545    C_ wss 3152   <.cop 3643   class class class wbr 4023    X. cxp 4687   -->wf 5251
This theorem is referenced by:  exfo  5678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator