MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Unicode version

Theorem dffi2 7428
Description: The set of finite intersections is the smallest set that contains  A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2  |-  ( A  e.  V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
Distinct variable groups:    x, y,
z, A    y, V, z
Allowed substitution hint:    V( x)

Proof of Theorem dffi2
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 elex 2964 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 vex 2959 . . . . . . . . . 10  |-  t  e. 
_V
3 elfi 7418 . . . . . . . . . 10  |-  ( ( t  e.  _V  /\  A  e.  _V )  ->  ( t  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x
) )
42, 3mpan 652 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
t  e.  ( fi
`  A )  <->  E. x  e.  ( ~P A  i^i  Fin ) t  =  |^| x ) )
54biimpd 199 . . . . . . . 8  |-  ( A  e.  _V  ->  (
t  e.  ( fi
`  A )  ->  E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x
) )
6 df-rex 2711 . . . . . . . . 9  |-  ( E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x  <->  E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x ) )
7 fiint 7383 . . . . . . . . . . . 12  |-  ( A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z  <->  A. x ( ( x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  z ) )
8 inss1 3561 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ~P A  i^i  Fin )  C_ 
~P A
98sseli 3344 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
109elpwid 3808 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
11103ad2ant2 979 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  C_  A
)
12 simp1 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  A  C_  z
)
1311, 12sstrd 3358 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  C_  z
)
14 eleq1 2496 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  |^| x  -> 
( t  e.  _V  <->  |^| x  e.  _V )
)
152, 14mpbii 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  |^| x  ->  |^| x  e.  _V )
16 intex 4356 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
1715, 16sylibr 204 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  |^| x  ->  x  =/=  (/) )
18173ad2ant3 980 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  =/=  (/) )
19 inss2 3562 . . . . . . . . . . . . . . . . . . . 20  |-  ( ~P A  i^i  Fin )  C_ 
Fin
2019sseli 3344 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  Fin )
21203ad2ant2 979 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  e.  Fin )
2213, 18, 213jca 1134 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin ) )
23223expib 1156 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin ) ) )
24 pm2.27 37 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  |^| x  e.  z ) )
2523, 24syl6 31 . . . . . . . . . . . . . . 15  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  |^| x  e.  z ) ) )
26 eleq1 2496 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  |^| x  -> 
( t  e.  z  <->  |^| x  e.  z
) )
2726biimprd 215 . . . . . . . . . . . . . . . . 17  |-  ( t  =  |^| x  -> 
( |^| x  e.  z  ->  t  e.  z ) )
2827adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( |^| x  e.  z  ->  t  e.  z ) )
2928a1i 11 . . . . . . . . . . . . . . 15  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( |^| x  e.  z  ->  t  e.  z ) ) )
3025, 29syldd 63 . . . . . . . . . . . . . 14  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  t  e.  z ) ) )
3130com23 74 . . . . . . . . . . . . 13  |-  ( A 
C_  z  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  t  e.  z ) ) )
3231alimdv 1631 . . . . . . . . . . . 12  |-  ( A 
C_  z  ->  ( A. x ( ( x 
C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  z )  ->  A. x
( ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) ) )
337, 32syl5bi 209 . . . . . . . . . . 11  |-  ( A 
C_  z  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  ->  A. x ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  -> 
t  e.  z ) ) )
3433imp 419 . . . . . . . . . 10  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  A. x
( ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) )
35 19.23v 1914 . . . . . . . . . 10  |-  ( A. x ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  -> 
t  e.  z )  <-> 
( E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  t  e.  z ) )
3634, 35sylib 189 . . . . . . . . 9  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) )
376, 36syl5bi 209 . . . . . . . 8  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x  ->  t  e.  z ) )
385, 37sylan9 639 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) )  -> 
( t  e.  ( fi `  A )  ->  t  e.  z ) )
3938ssrdv 3354 . . . . . 6  |-  ( ( A  e.  _V  /\  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) )  -> 
( fi `  A
)  C_  z )
4039ex 424 . . . . 5  |-  ( A  e.  _V  ->  (
( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z )  ->  ( fi `  A )  C_  z
) )
4140alrimiv 1641 . . . 4  |-  ( A  e.  _V  ->  A. z
( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z )  ->  ( fi `  A )  C_  z
) )
42 ssintab 4067 . . . 4  |-  ( ( fi `  A ) 
C_  |^| { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  <->  A. z ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( fi `  A )  C_  z ) )
4341, 42sylibr 204 . . 3  |-  ( A  e.  _V  ->  ( fi `  A )  C_  |^|
{ z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
44 ssfii 7424 . . . . 5  |-  ( A  e.  _V  ->  A  C_  ( fi `  A
) )
45 fiin 7427 . . . . . . 7  |-  ( ( x  e.  ( fi
`  A )  /\  y  e.  ( fi `  A ) )  -> 
( x  i^i  y
)  e.  ( fi
`  A ) )
4645rgen2a 2772 . . . . . 6  |-  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A )
4746a1i 11 . . . . 5  |-  ( A  e.  _V  ->  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) )
48 fvex 5742 . . . . . 6  |-  ( fi
`  A )  e. 
_V
49 sseq2 3370 . . . . . . 7  |-  ( z  =  ( fi `  A )  ->  ( A  C_  z  <->  A  C_  ( fi `  A ) ) )
50 eleq2 2497 . . . . . . . . 9  |-  ( z  =  ( fi `  A )  ->  (
( x  i^i  y
)  e.  z  <->  ( x  i^i  y )  e.  ( fi `  A ) ) )
5150raleqbi1dv 2912 . . . . . . . 8  |-  ( z  =  ( fi `  A )  ->  ( A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5251raleqbi1dv 2912 . . . . . . 7  |-  ( z  =  ( fi `  A )  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5349, 52anbi12d 692 . . . . . 6  |-  ( z  =  ( fi `  A )  ->  (
( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z )  <-> 
( A  C_  ( fi `  A )  /\  A. x  e.  ( fi
`  A ) A. y  e.  ( fi `  A ) ( x  i^i  y )  e.  ( fi `  A
) ) ) )
5448, 53elab 3082 . . . . 5  |-  ( ( fi `  A )  e.  { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  <->  ( A  C_  ( fi `  A )  /\  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5544, 47, 54sylanbrc 646 . . . 4  |-  ( A  e.  _V  ->  ( fi `  A )  e. 
{ z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
56 intss1 4065 . . . 4  |-  ( ( fi `  A )  e.  { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  ( fi `  A ) )
5755, 56syl 16 . . 3  |-  ( A  e.  _V  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  ( fi `  A ) )
5843, 57eqssd 3365 . 2  |-  ( A  e.  _V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
591, 58syl 16 1  |-  ( A  e.  V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   |^|cint 4050   ` cfv 5454   Fincfn 7109   ficfi 7415
This theorem is referenced by:  fiss  7429  inficl  7430  dffi3  7436  fbssfi  17869
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-fin 7113  df-fi 7416
  Copyright terms: Public domain W3C validator