MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Unicode version

Theorem dffo5 5878
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 5877 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
2 rexex 2757 . . . . 5  |-  ( E. x  e.  A  x F y  ->  E. x  x F y )
32ralimi 2773 . . . 4  |-  ( A. y  e.  B  E. x  e.  A  x F y  ->  A. y  e.  B  E. x  x F y )
43anim2i 553 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  -> 
( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
5 ffn 5583 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
6 fnbr 5539 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
76ex 424 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
85, 7syl 16 . . . . . . . 8  |-  ( F : A --> B  -> 
( x F y  ->  x  e.  A
) )
98ancrd 538 . . . . . . 7  |-  ( F : A --> B  -> 
( x F y  ->  ( x  e.  A  /\  x F y ) ) )
109eximdv 1632 . . . . . 6  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x
( x  e.  A  /\  x F y ) ) )
11 df-rex 2703 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
1210, 11syl6ibr 219 . . . . 5  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x  e.  A  x F
y ) )
1312ralimdv 2777 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E. x  x F y  ->  A. y  e.  B  E. x  e.  A  x F
y ) )
1413imdistani 672 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  x F y )  ->  ( F : A
--> B  /\  A. y  e.  B  E. x  e.  A  x F
y ) )
154, 14impbii 181 . 2  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
161, 15bitri 241 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    e. wcel 1725   A.wral 2697   E.wrex 2698   class class class wbr 4204    Fn wfn 5441   -->wf 5442   -onto->wfo 5444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fo 5452  df-fv 5454
  Copyright terms: Public domain W3C validator