MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Unicode version

Theorem dffr3 5045
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem dffr3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffr2 4358 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
2 vex 2791 . . . . . . . . 9  |-  y  e. 
_V
3 iniseg 5044 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( `' R " { y } )  =  {
z  |  z R y } )
42, 3ax-mp 8 . . . . . . . 8  |-  ( `' R " { y } )  =  {
z  |  z R y }
54ineq2i 3367 . . . . . . 7  |-  ( x  i^i  ( `' R " { y } ) )  =  ( x  i^i  { z  |  z R y } )
6 dfrab3 3444 . . . . . . 7  |-  { z  e.  x  |  z R y }  =  ( x  i^i  { z  |  z R y } )
75, 6eqtr4i 2306 . . . . . 6  |-  ( x  i^i  ( `' R " { y } ) )  =  { z  e.  x  |  z R y }
87eqeq1i 2290 . . . . 5  |-  ( ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  { z  e.  x  |  z R y }  =  (/) )
98rexbii 2568 . . . 4  |-  ( E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )
109imbi2i 303 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
1110albii 1553 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
121, 11bitr4i 243 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   E.wrex 2544   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    Fr wfr 4349   `'ccnv 4688   "cima 4692
This theorem is referenced by:  isofrlem  5837  dffr4  24182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-fr 4352  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator