MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Structured version   Unicode version

Theorem dffr3 5236
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem dffr3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffr2 4547 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
2 vex 2959 . . . . . . . . 9  |-  y  e. 
_V
3 iniseg 5235 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( `' R " { y } )  =  {
z  |  z R y } )
42, 3ax-mp 8 . . . . . . . 8  |-  ( `' R " { y } )  =  {
z  |  z R y }
54ineq2i 3539 . . . . . . 7  |-  ( x  i^i  ( `' R " { y } ) )  =  ( x  i^i  { z  |  z R y } )
6 dfrab3 3617 . . . . . . 7  |-  { z  e.  x  |  z R y }  =  ( x  i^i  { z  |  z R y } )
75, 6eqtr4i 2459 . . . . . 6  |-  ( x  i^i  ( `' R " { y } ) )  =  { z  e.  x  |  z R y }
87eqeq1i 2443 . . . . 5  |-  ( ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  { z  e.  x  |  z R y }  =  (/) )
98rexbii 2730 . . . 4  |-  ( E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )
109imbi2i 304 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
1110albii 1575 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
121, 11bitr4i 244 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   E.wrex 2706   {crab 2709   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   class class class wbr 4212    Fr wfr 4538   `'ccnv 4877   "cima 4881
This theorem is referenced by:  isofrlem  6060  dffr4  25457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-fr 4541  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891
  Copyright terms: Public domain W3C validator