MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2 Unicode version

Theorem dffun2 5281
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 5273 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
2 df-id 4325 . . . . . 6  |-  _I  =  { <. y ,  z
>.  |  y  =  z }
32sseq2i 3216 . . . . 5  |-  ( ( A  o.  `' A
)  C_  _I  <->  ( A  o.  `' A )  C_  { <. y ,  z >.  |  y  =  z } )
4 df-co 4714 . . . . . 6  |-  ( A  o.  `' A )  =  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) }
54sseq1i 3215 . . . . 5  |-  ( ( A  o.  `' A
)  C_  { <. y ,  z >.  |  y  =  z }  <->  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z } )
6 ssopab2b 4307 . . . . 5  |-  ( {
<. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z }  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
73, 5, 63bitri 262 . . . 4  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
8 vex 2804 . . . . . . . . . . . 12  |-  y  e. 
_V
9 vex 2804 . . . . . . . . . . . 12  |-  x  e. 
_V
108, 9brcnv 4880 . . . . . . . . . . 11  |-  ( y `' A x  <->  x A
y )
1110anbi1i 676 . . . . . . . . . 10  |-  ( ( y `' A x  /\  x A z )  <->  ( x A y  /\  x A z ) )
1211exbii 1572 . . . . . . . . 9  |-  ( E. x ( y `' A x  /\  x A z )  <->  E. x
( x A y  /\  x A z ) )
1312imbi1i 315 . . . . . . . 8  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
14 19.23v 1844 . . . . . . . 8  |-  ( A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
1513, 14bitr4i 243 . . . . . . 7  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1615albii 1556 . . . . . 6  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
17 alcom 1723 . . . . . 6  |-  ( A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
1816, 17bitri 240 . . . . 5  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1918albii 1556 . . . 4  |-  ( A. y A. z ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. y A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
20 alcom 1723 . . . 4  |-  ( A. y A. x A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
217, 19, 203bitri 262 . . 3  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
2221anbi2i 675 . 2  |-  ( ( Rel  A  /\  ( A  o.  `' A
)  C_  _I  )  <->  ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) ) )
231, 22bitri 240 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    C_ wss 3165   class class class wbr 4039   {copab 4092    _I cid 4320   `'ccnv 4704    o. ccom 4709   Rel wrel 4710   Fun wfun 5265
This theorem is referenced by:  dffun3  5282  dffun4  5283  fliftfun  5827  fpwwe2lem11  8278  fclim  12043  invfun  13682  lmfun  17125  fundmpss  24193  fununiq  24197  wfrlem5  24331  wfrlem11  24337  frrlem5  24356  frrlem5c  24358  dffun10  24524  fnsingle  24529  funimage  24538  funpartfun  24553
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-cnv 4713  df-co 4714  df-fun 5273
  Copyright terms: Public domain W3C validator