MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3 Unicode version

Theorem dffun3 5282
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun3  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun3
StepHypRef Expression
1 dffun2 5281 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 breq2 4043 . . . . . 6  |-  ( y  =  z  ->  (
x A y  <->  x A
z ) )
32mo4 2189 . . . . 5  |-  ( E* y  x A y  <->  A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
4 nfv 1609 . . . . . 6  |-  F/ z  x A y
54mo2 2185 . . . . 5  |-  ( E* y  x A y  <->  E. z A. y ( x A y  -> 
y  =  z ) )
63, 5bitr3i 242 . . . 4  |-  ( A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  E. z A. y ( x A y  -> 
y  =  z ) )
76albii 1556 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x E. z A. y ( x A y  -> 
y  =  z ) )
87anbi2i 675 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
91, 8bitri 240 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632   E*wmo 2157   class class class wbr 4039   Rel wrel 4710   Fun wfun 5265
This theorem is referenced by:  dffun5  5284  dffun6f  5285  dffv2  5608  sbcfun  28090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-cnv 4713  df-co 4714  df-fun 5273
  Copyright terms: Public domain W3C validator