MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Unicode version

Theorem dffun6 5270
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Distinct variable group:    x, y, F

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2419 . 2  |-  F/_ x F
2 nfcv 2419 . 2  |-  F/_ y F
31, 2dffun6f 5269 1  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1527   E*wmo 2144   class class class wbr 4023   Rel wrel 4694   Fun wfun 5249
This theorem is referenced by:  funmo  5271  dffun7  5280  funcnvsn  5297  funcnv2  5309  svrelfun  5313  fnres  5360  nfunsn  5558  dff3  5673  brdom3  8153  nqerf  8554  shftfn  11568  perfdvf  19253  taylf  19740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-cnv 4697  df-co 4698  df-fun 5257
  Copyright terms: Public domain W3C validator