MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Unicode version

Theorem dfid2 4311
Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2  |-  _I  =  { <. x ,  x >.  |  x  =  x }

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 4310 1  |-  _I  =  { <. x ,  x >.  |  x  =  x }
Colors of variables: wff set class
Syntax hints:    = wceq 1623   {copab 4076    _I cid 4304
This theorem is referenced by:  fsplit  6223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-id 4309
  Copyright terms: Public domain W3C validator