MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Structured version   Unicode version

Theorem dfid2 4500
Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2  |-  _I  =  { <. x ,  x >.  |  x  =  x }

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 4499 1  |-  _I  =  { <. x ,  x >.  |  x  =  x }
Colors of variables: wff set class
Syntax hints:    = wceq 1652   {copab 4265    _I cid 4493
This theorem is referenced by:  fsplit  6451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-id 4498
  Copyright terms: Public domain W3C validator