MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif4 Unicode version

Theorem dfif4 3589
Description: Alternate definition of the conditional operator df-if 3579. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.)
Hypothesis
Ref Expression
dfif3.1  |-  C  =  { x  |  ph }
Assertion
Ref Expression
dfif4  |-  if (
ph ,  A ,  B )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem dfif4
StepHypRef Expression
1 dfif3.1 . . 3  |-  C  =  { x  |  ph }
21dfif3 3588 . 2  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
3 undir 3431 . 2  |-  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )
4 undi 3429 . . . 4  |-  ( A  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  u.  B
)  i^i  ( A  u.  ( _V  \  C
) ) )
5 undi 3429 . . . . 5  |-  ( C  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( C  u.  B
)  i^i  ( C  u.  ( _V  \  C
) ) )
6 uncom 3332 . . . . . 6  |-  ( C  u.  B )  =  ( B  u.  C
)
7 undifv 3541 . . . . . 6  |-  ( C  u.  ( _V  \  C ) )  =  _V
86, 7ineq12i 3381 . . . . 5  |-  ( ( C  u.  B )  i^i  ( C  u.  ( _V  \  C ) ) )  =  ( ( B  u.  C
)  i^i  _V )
9 inv1 3494 . . . . 5  |-  ( ( B  u.  C )  i^i  _V )  =  ( B  u.  C
)
105, 8, 93eqtri 2320 . . . 4  |-  ( C  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( B  u.  C )
114, 10ineq12i 3381 . . 3  |-  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )  =  ( ( ( A  u.  B )  i^i  ( A  u.  ( _V  \  C ) ) )  i^i  ( B  u.  C ) )
12 inass 3392 . . 3  |-  ( ( ( A  u.  B
)  i^i  ( A  u.  ( _V  \  C
) ) )  i^i  ( B  u.  C
) )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
1311, 12eqtri 2316 . 2  |-  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
142, 3, 133eqtri 2320 1  |-  if (
ph ,  A ,  B )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   {cab 2282   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164   ifcif 3578
This theorem is referenced by:  dfif5  3590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579
  Copyright terms: Public domain W3C validator