MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin3g Unicode version

Theorem dfiin3g 5014
Description: Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiin3g  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiin3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4017 . 2  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 eqid 2358 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 5007 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43inteqi 3947 . 2  |-  |^| ran  ( x  e.  A  |->  B )  =  |^| { y  |  E. x  e.  A  y  =  B }
51, 4syl6eqr 2408 1  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620   |^|cint 3943   |^|_ciin 3987    e. cmpt 4158   ran crn 4772
This theorem is referenced by:  dfiin3  5016  riinint  5017  iinon  6444  cmpfi  17241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-int 3944  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-cnv 4779  df-dm 4781  df-rn 4782
  Copyright terms: Public domain W3C validator