MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Structured version   Unicode version

Theorem dfima3 5206
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 5205 . 2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
2 df-br 4213 . . . . 5  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32rexbii 2730 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x  e.  B  <. x ,  y >.  e.  A
)
4 df-rex 2711 . . . 4  |-  ( E. x  e.  B  <. x ,  y >.  e.  A  <->  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) )
53, 4bitri 241 . . 3  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  A ) )
65abbii 2548 . 2  |-  { y  |  E. x  e.  B  x A y }  =  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }
71, 6eqtri 2456 1  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706   <.cop 3817   class class class wbr 4212   "cima 4881
This theorem is referenced by:  imadmrn  5215  imassrn  5216  imai  5218  funimaexg  5530  rdglim2  6690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891
  Copyright terms: Public domain W3C validator