MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Unicode version

Theorem dfima3 5031
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 5030 . 2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
2 df-br 4040 . . . . 5  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32rexbii 2581 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x  e.  B  <. x ,  y >.  e.  A
)
4 df-rex 2562 . . . 4  |-  ( E. x  e.  B  <. x ,  y >.  e.  A  <->  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) )
53, 4bitri 240 . . 3  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  A ) )
65abbii 2408 . 2  |-  { y  |  E. x  e.  B  x A y }  =  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }
71, 6eqtri 2316 1  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   <.cop 3656   class class class wbr 4039   "cima 4708
This theorem is referenced by:  imadmrn  5040  imassrn  5041  imai  5043  funimaexg  5345  rdglim2  6461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718
  Copyright terms: Public domain W3C validator