Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Unicode version

Theorem dfin4 3583
 Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 3563 . . 3
2 dfss4 3577 . . 3
31, 2mpbi 201 . 2
4 difin 3580 . . 3
54difeq2i 3464 . 2
63, 5eqtr3i 2460 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   cdif 3319   cin 3321   wss 3322 This theorem is referenced by:  indif  3585  cnvin  5282  imain  5532  resin  5700  elcls  17142  cmmbl  19434  mbfeqalem  19537  itg1addlem4  19594  itg1addlem5  19595  inelsiga  24523  mblfinlem4  26258  ismblfin  26259  cnambfre  26267  stoweidlem50  27789 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336
 Copyright terms: Public domain W3C validator