MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Unicode version

Theorem dfin4 3409
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 3389 . . 3  |-  ( A  i^i  B )  C_  A
2 dfss4 3403 . . 3  |-  ( ( A  i^i  B ) 
C_  A  <->  ( A  \  ( A  \  ( A  i^i  B ) ) )  =  ( A  i^i  B ) )
31, 2mpbi 199 . 2  |-  ( A 
\  ( A  \ 
( A  i^i  B
) ) )  =  ( A  i^i  B
)
4 difin 3406 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
54difeq2i 3291 . 2  |-  ( A 
\  ( A  \ 
( A  i^i  B
) ) )  =  ( A  \  ( A  \  B ) )
63, 5eqtr3i 2305 1  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    \ cdif 3149    i^i cin 3151    C_ wss 3152
This theorem is referenced by:  indif  3411  cnvin  5088  imain  5328  resin  5495  elcls  16810  cmmbl  18892  mbfeqalem  18997  itg1addlem4  19054  itg1addlem5  19055  inelsiga  23496  stoweidlem50  27799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator