MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfinfmr Unicode version

Theorem dfinfmr 9917
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals  A. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
dfinfmr  |-  ( A 
C_  RR  ->  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Distinct variable group:    x, y, z, A

Proof of Theorem dfinfmr
StepHypRef Expression
1 df-sup 7381 . 2  |-  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }
2 ssel2 3286 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
3 lenlt 9087 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <_  y  <->  -.  y  <  x ) )
4 vex 2902 . . . . . . . . . . . 12  |-  x  e. 
_V
5 vex 2902 . . . . . . . . . . . 12  |-  y  e. 
_V
64, 5brcnv 4995 . . . . . . . . . . 11  |-  ( x `'  <  y  <->  y  <  x )
76notbii 288 . . . . . . . . . 10  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
83, 7syl6rbbr 256 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
92, 8sylan2 461 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  y  e.  A )
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
109ancoms 440 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1110an32s 780 . . . . . 6  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1211ralbidva 2665 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  x  <_  y ) )
135, 4brcnv 4995 . . . . . . . 8  |-  ( y `'  <  x  <->  x  <  y )
14 vex 2902 . . . . . . . . . 10  |-  z  e. 
_V
155, 14brcnv 4995 . . . . . . . . 9  |-  ( y `'  <  z  <->  z  <  y )
1615rexbii 2674 . . . . . . . 8  |-  ( E. z  e.  A  y `'  <  z  <->  E. z  e.  A  z  <  y )
1713, 16imbi12i 317 . . . . . . 7  |-  ( ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <-> 
( x  <  y  ->  E. z  e.  A  z  <  y ) )
1817ralbii 2673 . . . . . 6  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) )
1918a1i 11 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2012, 19anbi12d 692 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) )  <->  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) ) )
2120rabbidva 2890 . . 3  |-  ( A 
C_  RR  ->  { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  {
x  e.  RR  | 
( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) } )
2221unieqd 3968 . 2  |-  ( A 
C_  RR  ->  U. {
x  e.  RR  | 
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
231, 22syl5eq 2431 1  |-  ( A 
C_  RR  ->  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   {crab 2653    C_ wss 3263   U.cuni 3957   class class class wbr 4153   `'ccnv 4817   supcsup 7380   RRcr 8922    < clt 9053    <_ cle 9054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-xp 4824  df-cnv 4826  df-sup 7381  df-xr 9057  df-le 9059
  Copyright terms: Public domain W3C validator