Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfint2 Structured version   Unicode version

Theorem dfint2 4044
 Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2
Distinct variable group:   ,,

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 4043 . 2
2 df-ral 2702 . . 3
32abbii 2547 . 2
41, 3eqtr4i 2458 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549   wceq 1652   wcel 1725  cab 2421  wral 2697  cint 4042 This theorem is referenced by:  inteq  4045  nfint  4052  intiin  4137  dfint3  25789 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-ral 2702  df-int 4043
 Copyright terms: Public domain W3C validator