MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfint2 Unicode version

Theorem dfint2 3864
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Distinct variable group:    x, y, A

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 3863 . 2  |-  |^| A  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
2 df-ral 2548 . . 3  |-  ( A. y  e.  A  x  e.  y  <->  A. y ( y  e.  A  ->  x  e.  y ) )
32abbii 2395 . 2  |-  { x  |  A. y  e.  A  x  e.  y }  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
41, 3eqtr4i 2306 1  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   |^|cint 3862
This theorem is referenced by:  inteq  3865  nfint  3872  intiin  3956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-ral 2548  df-int 3863
  Copyright terms: Public domain W3C validator