MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfint2 Structured version   Unicode version

Theorem dfint2 4044
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Distinct variable group:    x, y, A

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 4043 . 2  |-  |^| A  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
2 df-ral 2702 . . 3  |-  ( A. y  e.  A  x  e.  y  <->  A. y ( y  e.  A  ->  x  e.  y ) )
32abbii 2547 . 2  |-  { x  |  A. y  e.  A  x  e.  y }  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
41, 3eqtr4i 2458 1  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   |^|cint 4042
This theorem is referenced by:  inteq  4045  nfint  4052  intiin  4137  dfint3  25789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-ral 2702  df-int 4043
  Copyright terms: Public domain W3C validator