Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfiota3 Structured version   Unicode version

Theorem dfiota3 25760
Description: A definiton of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfiota3  |-  ( iota
x ph )  =  U. U. ( { { x  |  ph } }  i^i  Singletons )

Proof of Theorem dfiota3
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 5410 . 2  |-  ( iota
x ph )  =  U. { y  |  {
x  |  ph }  =  { y } }
2 abeq1 2541 . . . . 5  |-  ( { y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) }  <->  A. y ( { x  |  ph }  =  {
y }  <->  y  e.  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) } ) )
3 exdistr 1929 . . . . . 6  |-  ( E. z E. w ( y  e.  z  /\  ( z  =  {
x  |  ph }  /\  z  =  {
w } ) )  <->  E. z ( y  e.  z  /\  E. w
( z  =  {
x  |  ph }  /\  z  =  {
w } ) ) )
4 vex 2951 . . . . . . . . 9  |-  y  e. 
_V
5 sneq 3817 . . . . . . . . . 10  |-  ( w  =  y  ->  { w }  =  { y } )
65eqeq2d 2446 . . . . . . . . 9  |-  ( w  =  y  ->  ( { x  |  ph }  =  { w }  <->  { x  |  ph }  =  {
y } ) )
74, 6ceqsexv 2983 . . . . . . . 8  |-  ( E. w ( w  =  y  /\  { x  |  ph }  =  {
w } )  <->  { x  |  ph }  =  {
y } )
8 snex 4397 . . . . . . . . . . 11  |-  { w }  e.  _V
9 eqeq1 2441 . . . . . . . . . . . . 13  |-  ( z  =  { w }  ->  ( z  =  {
x  |  ph }  <->  { w }  =  {
x  |  ph }
) )
10 eleq2 2496 . . . . . . . . . . . . 13  |-  ( z  =  { w }  ->  ( y  e.  z  <-> 
y  e.  { w } ) )
119, 10anbi12d 692 . . . . . . . . . . . 12  |-  ( z  =  { w }  ->  ( ( z  =  { x  |  ph }  /\  y  e.  z )  <->  ( { w }  =  { x  |  ph }  /\  y  e.  { w } ) ) )
12 eqcom 2437 . . . . . . . . . . . . 13  |-  ( { w }  =  {
x  |  ph }  <->  { x  |  ph }  =  { w } )
13 elsn 3821 . . . . . . . . . . . . . 14  |-  ( y  e.  { w }  <->  y  =  w )
14 equcom 1692 . . . . . . . . . . . . . 14  |-  ( y  =  w  <->  w  =  y )
1513, 14bitri 241 . . . . . . . . . . . . 13  |-  ( y  e.  { w }  <->  w  =  y )
1612, 15anbi12ci 680 . . . . . . . . . . . 12  |-  ( ( { w }  =  { x  |  ph }  /\  y  e.  { w } )  <->  ( w  =  y  /\  { x  |  ph }  =  {
w } ) )
1711, 16syl6bb 253 . . . . . . . . . . 11  |-  ( z  =  { w }  ->  ( ( z  =  { x  |  ph }  /\  y  e.  z )  <->  ( w  =  y  /\  { x  |  ph }  =  {
w } ) ) )
188, 17ceqsexv 2983 . . . . . . . . . 10  |-  ( E. z ( z  =  { w }  /\  ( z  =  {
x  |  ph }  /\  y  e.  z
) )  <->  ( w  =  y  /\  { x  |  ph }  =  {
w } ) )
19 an13 775 . . . . . . . . . . 11  |-  ( ( z  =  { w }  /\  ( z  =  { x  |  ph }  /\  y  e.  z ) )  <->  ( y  e.  z  /\  (
z  =  { x  |  ph }  /\  z  =  { w } ) ) )
2019exbii 1592 . . . . . . . . . 10  |-  ( E. z ( z  =  { w }  /\  ( z  =  {
x  |  ph }  /\  y  e.  z
) )  <->  E. z
( y  e.  z  /\  ( z  =  { x  |  ph }  /\  z  =  {
w } ) ) )
2118, 20bitr3i 243 . . . . . . . . 9  |-  ( ( w  =  y  /\  { x  |  ph }  =  { w } )  <->  E. z ( y  e.  z  /\  ( z  =  { x  | 
ph }  /\  z  =  { w } ) ) )
2221exbii 1592 . . . . . . . 8  |-  ( E. w ( w  =  y  /\  { x  |  ph }  =  {
w } )  <->  E. w E. z ( y  e.  z  /\  ( z  =  { x  | 
ph }  /\  z  =  { w } ) ) )
237, 22bitr3i 243 . . . . . . 7  |-  ( { x  |  ph }  =  { y }  <->  E. w E. z ( y  e.  z  /\  ( z  =  { x  | 
ph }  /\  z  =  { w } ) ) )
24 excom 1756 . . . . . . 7  |-  ( E. w E. z ( y  e.  z  /\  ( z  =  {
x  |  ph }  /\  z  =  {
w } ) )  <->  E. z E. w ( y  e.  z  /\  ( z  =  {
x  |  ph }  /\  z  =  {
w } ) ) )
2523, 24bitri 241 . . . . . 6  |-  ( { x  |  ph }  =  { y }  <->  E. z E. w ( y  e.  z  /\  ( z  =  { x  | 
ph }  /\  z  =  { w } ) ) )
26 eluniab 4019 . . . . . 6  |-  ( y  e.  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  { w } ) }  <->  E. z ( y  e.  z  /\  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) ) )
273, 25, 263bitr4i 269 . . . . 5  |-  ( { x  |  ph }  =  { y }  <->  y  e.  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) } )
282, 27mpgbir 1559 . . . 4  |-  { y  |  { x  | 
ph }  =  {
y } }  =  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) }
29 df-sn 3812 . . . . . . 7  |-  { {
x  |  ph } }  =  { z  |  z  =  {
x  |  ph } }
30 dfsingles2 25758 . . . . . . 7  |-  Singletons  =  {
z  |  E. w  z  =  { w } }
3129, 30ineq12i 3532 . . . . . 6  |-  ( { { x  |  ph } }  i^i  Singletons )  =  ( { z  |  z  =  { x  | 
ph } }  i^i  { z  |  E. w  z  =  { w } } )
32 inab 3601 . . . . . . 7  |-  ( { z  |  z  =  { x  |  ph } }  i^i  { z  |  E. w  z  =  { w } } )  =  {
z  |  ( z  =  { x  | 
ph }  /\  E. w  z  =  {
w } ) }
33 19.42v 1928 . . . . . . . . 9  |-  ( E. w ( z  =  { x  |  ph }  /\  z  =  {
w } )  <->  ( z  =  { x  |  ph }  /\  E. w  z  =  { w }
) )
3433bicomi 194 . . . . . . . 8  |-  ( ( z  =  { x  |  ph }  /\  E. w  z  =  {
w } )  <->  E. w
( z  =  {
x  |  ph }  /\  z  =  {
w } ) )
3534abbii 2547 . . . . . . 7  |-  { z  |  ( z  =  { x  |  ph }  /\  E. w  z  =  { w }
) }  =  {
z  |  E. w
( z  =  {
x  |  ph }  /\  z  =  {
w } ) }
3632, 35eqtri 2455 . . . . . 6  |-  ( { z  |  z  =  { x  |  ph } }  i^i  { z  |  E. w  z  =  { w } } )  =  {
z  |  E. w
( z  =  {
x  |  ph }  /\  z  =  {
w } ) }
3731, 36eqtri 2455 . . . . 5  |-  ( { { x  |  ph } }  i^i  Singletons )  =  {
z  |  E. w
( z  =  {
x  |  ph }  /\  z  =  {
w } ) }
3837unieqi 4017 . . . 4  |-  U. ( { { x  |  ph } }  i^i  Singletons )  =  U. { z  |  E. w ( z  =  { x  |  ph }  /\  z  =  {
w } ) }
3928, 38eqtr4i 2458 . . 3  |-  { y  |  { x  | 
ph }  =  {
y } }  =  U. ( { { x  |  ph } }  i^i  Singletons )
4039unieqi 4017 . 2  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. U. ( { {
x  |  ph } }  i^i  Singletons )
411, 40eqtri 2455 1  |-  ( iota
x ph )  =  U. U. ( { { x  |  ph } }  i^i  Singletons )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    i^i cin 3311   {csn 3806   U.cuni 4007   iotacio 5408   Singletonscsingles 25675
This theorem is referenced by:  dffv5  25761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-eprel 4486  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fo 5452  df-fv 5454  df-1st 6341  df-2nd 6342  df-symdif 25655  df-txp 25690  df-singleton 25698  df-singles 25699
  Copyright terms: Public domain W3C validator