MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim3 Unicode version

Theorem dflim3 4769
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dflim3  |-  ( Lim 
A  <->  ( Ord  A  /\  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) ) )
Distinct variable group:    x, A

Proof of Theorem dflim3
StepHypRef Expression
1 df-lim 4529 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  A  =/=  (/)  /\  A  =  U. A ) )
2 3anass 940 . 2  |-  ( ( Ord  A  /\  A  =/=  (/)  /\  A  = 
U. A )  <->  ( Ord  A  /\  ( A  =/=  (/)  /\  A  =  U. A ) ) )
3 df-ne 2554 . . . . . 6  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
43a1i 11 . . . . 5  |-  ( Ord 
A  ->  ( A  =/=  (/)  <->  -.  A  =  (/) ) )
5 orduninsuc 4765 . . . . 5  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
64, 5anbi12d 692 . . . 4  |-  ( Ord 
A  ->  ( ( A  =/=  (/)  /\  A  = 
U. A )  <->  ( -.  A  =  (/)  /\  -.  E. x  e.  On  A  =  suc  x ) ) )
7 ioran 477 . . . 4  |-  ( -.  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x )  <-> 
( -.  A  =  (/)  /\  -.  E. x  e.  On  A  =  suc  x ) )
86, 7syl6bbr 255 . . 3  |-  ( Ord 
A  ->  ( ( A  =/=  (/)  /\  A  = 
U. A )  <->  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) ) )
98pm5.32i 619 . 2  |-  ( ( Ord  A  /\  ( A  =/=  (/)  /\  A  = 
U. A ) )  <-> 
( Ord  A  /\  -.  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x ) ) )
101, 2, 93bitri 263 1  |-  ( Lim 
A  <->  ( Ord  A  /\  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    =/= wne 2552   E.wrex 2652   (/)c0 3573   U.cuni 3959   Ord word 4523   Oncon0 4524   Lim wlim 4525   suc csuc 4526
This theorem is referenced by:  nlimon  4773  tfinds  4781  oalimcl  6741  omlimcl  6759  r1wunlim  8547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530
  Copyright terms: Public domain W3C validator