MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt Unicode version

Theorem dfmpt 5701
Description: Alternate definition for the "maps to" notation df-mpt 4079 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
dfmpt  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 5366 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
2 vex 2791 . . . . 5  |-  x  e. 
_V
3 dfmpt.1 . . . . 5  |-  B  e. 
_V
42, 3xpsn 5700 . . . 4  |-  ( { x }  X.  { B } )  =  { <. x ,  B >. }
54a1i 10 . . 3  |-  ( x  e.  A  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
65iuneq2i 3923 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  U_ x  e.  A  { <. x ,  B >. }
71, 6eqtri 2303 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   <.cop 3643   U_ciun 3905    e. cmpt 4077    X. cxp 4687
This theorem is referenced by:  fnasrn  5702  dfmpt2  6209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
  Copyright terms: Public domain W3C validator