MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt2 Unicode version

Theorem dfmpt2 6251
Description: Alternate definition for the "maps to" notation df-mpt2 5905 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt2.1  |-  C  e. 
_V
Assertion
Ref Expression
dfmpt2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem dfmpt2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mpt2mpts 6230 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C )
2 fvex 5577 . . . 4  |-  ( 1st `  w )  e.  _V
3 fvex 5577 . . . . 5  |-  ( 2nd `  w )  e.  _V
4 dfmpt2.1 . . . . 5  |-  C  e. 
_V
53, 4csbex 3126 . . . 4  |-  [_ ( 2nd `  w )  / 
y ]_ C  e.  _V
62, 5csbex 3126 . . 3  |-  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C  e.  _V
76dfmpt 5739 . 2  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C )  =  U_ w  e.  ( A  X.  B ) { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }
8 nfcv 2452 . . . . 5  |-  F/_ x w
9 nfcsb1v 3147 . . . . 5  |-  F/_ x [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
108, 9nfop 3849 . . . 4  |-  F/_ x <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
1110nfsn 3725 . . 3  |-  F/_ x { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
12 nfcv 2452 . . . . 5  |-  F/_ y
w
13 nfcv 2452 . . . . . 6  |-  F/_ y
( 1st `  w
)
14 nfcsb1v 3147 . . . . . 6  |-  F/_ y [_ ( 2nd `  w
)  /  y ]_ C
1513, 14nfcsb 3149 . . . . 5  |-  F/_ y [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1612, 15nfop 3849 . . . 4  |-  F/_ y <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
1716nfsn 3725 . . 3  |-  F/_ y { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
18 nfcv 2452 . . 3  |-  F/_ w { <. <. x ,  y
>. ,  C >. }
19 id 19 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  w  =  <. x ,  y >. )
20 csbopeq1a 6215 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C  =  C )
2119, 20opeq12d 3841 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >.  =  <. <.
x ,  y >. ,  C >. )
2221sneqd 3687 . . 3  |-  ( w  =  <. x ,  y
>.  ->  { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  { <. <. x ,  y
>. ,  C >. } )
2311, 17, 18, 22iunxpf 4869 . 2  |-  U_ w  e.  ( A  X.  B
) { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
241, 7, 233eqtri 2340 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1633    e. wcel 1701   _Vcvv 2822   [_csb 3115   {csn 3674   <.cop 3677   U_ciun 3942    e. cmpt 4114    X. cxp 4724   ` cfv 5292    e. cmpt2 5902   1stc1st 6162   2ndc2nd 6163
This theorem is referenced by:  fpar  6264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165
  Copyright terms: Public domain W3C validator