MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Structured version   Unicode version

Theorem dfnn3 10014
Description: Alternate definition of the set of natural numbers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2497 . . . 4  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
2 eleq2 2497 . . . . 5  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
32raleqbi1dv 2912 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
41, 3anbi12d 692 . . 3  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
5 dfnn2 10013 . . . . 5  |-  NN  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }
65eqeq2i 2446 . . . 4  |-  ( x  =  NN  <->  x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) } )
7 eleq2 2497 . . . . 5  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
8 eleq2 2497 . . . . . 6  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
98raleqbi1dv 2912 . . . . 5  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
107, 9anbi12d 692 . . . 4  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
116, 10sylbir 205 . . 3  |-  ( x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  ->  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
12 nnssre 10004 . . . . 5  |-  NN  C_  RR
135, 12eqsstr3i 3379 . . . 4  |-  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  C_  RR
14 1nn 10011 . . . . 5  |-  1  e.  NN
15 peano2nn 10012 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
1615rgen 2771 . . . . 5  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
1714, 16pm3.2i 442 . . . 4  |-  ( 1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN )
1813, 17pm3.2i 442 . . 3  |-  ( |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z ) } 
C_  RR  /\  (
1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN ) )
194, 11, 18intabs 4361 . 2  |-  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 3anass 940 . . . 4  |-  ( ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) ) )
2120abbii 2548 . . 3  |-  { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
2221inteqi 4054 . 2  |-  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
23 dfnn2 10013 . 2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2419, 22, 233eqtr4ri 2467 1  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705    C_ wss 3320   |^|cint 4050  (class class class)co 6081   RRcr 8989   1c1 8991    + caddc 8993   NNcn 10000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-i2m1 9058  ax-1ne0 9059  ax-rrecex 9062  ax-cnre 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-recs 6633  df-rdg 6668  df-nn 10001
  Copyright terms: Public domain W3C validator