MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Unicode version

Theorem dfnn3 9760
Description: Alternate definition of the set of natural numbers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2344 . . . 4  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
2 eleq2 2344 . . . . 5  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
32raleqbi1dv 2744 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
41, 3anbi12d 691 . . 3  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
5 dfnn2 9759 . . . . 5  |-  NN  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }
65eqeq2i 2293 . . . 4  |-  ( x  =  NN  <->  x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) } )
7 eleq2 2344 . . . . 5  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
8 eleq2 2344 . . . . . 6  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
98raleqbi1dv 2744 . . . . 5  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
107, 9anbi12d 691 . . . 4  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
116, 10sylbir 204 . . 3  |-  ( x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  ->  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
12 nnssre 9750 . . . . 5  |-  NN  C_  RR
135, 12eqsstr3i 3209 . . . 4  |-  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  C_  RR
14 1nn 9757 . . . . 5  |-  1  e.  NN
15 peano2nn 9758 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
1615rgen 2608 . . . . 5  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
1714, 16pm3.2i 441 . . . 4  |-  ( 1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN )
1813, 17pm3.2i 441 . . 3  |-  ( |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z ) } 
C_  RR  /\  (
1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN ) )
194, 11, 18intabs 4172 . 2  |-  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 3anass 938 . . . 4  |-  ( ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) ) )
2120abbii 2395 . . 3  |-  { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
2221inteqi 3866 . 2  |-  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
23 dfnn2 9759 . 2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2419, 22, 233eqtr4ri 2314 1  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543    C_ wss 3152   |^|cint 3862  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740   NNcn 9746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-nn 9747
  Copyright terms: Public domain W3C validator