MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnot Unicode version

Theorem dfnot 1322
Description: Given falsum, we can define the negation of a wff 
ph as the statement that a contradiction follows from assuming  ph. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
dfnot  |-  ( -. 
ph 
<->  ( ph  ->  F.  ) )

Proof of Theorem dfnot
StepHypRef Expression
1 pm2.21 100 . 2  |-  ( -. 
ph  ->  ( ph  ->  F.  ) )
2 id 19 . . 3  |-  ( -. 
ph  ->  -.  ph )
3 falim 1319 . . 3  |-  (  F. 
->  -.  ph )
42, 3ja 153 . 2  |-  ( (
ph  ->  F.  )  ->  -. 
ph )
51, 4impbii 180 1  |-  ( -. 
ph 
<->  ( ph  ->  F.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    F. wfal 1308
This theorem is referenced by:  inegd  1323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator