MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul2 Unicode version

Theorem dfnul2 3457
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3456 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2347 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3162 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 eqid 2283 . . . . 5  |-  x  =  x
5 pm3.24 852 . . . . 5  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
64, 52th 230 . . . 4  |-  ( x  =  x  <->  -.  (
x  e.  _V  /\  -.  x  e.  _V ) )
76con2bii 322 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 262 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2394 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    \ cdif 3149   (/)c0 3455
This theorem is referenced by:  dfnul3  3458  rab0  3475  iotanul  5234  avril1  20836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-nul 3456
  Copyright terms: Public domain W3C validator