Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem5 Unicode version

Theorem dfon2lem5 24214
Description: Lemma for dfon2 24219. Two sets satisfying the new definition also satisfy trichotomy with respect to 
e. (Contributed by Scott Fenton, 25-Feb-2011.)
Hypotheses
Ref Expression
dfon2lem5.1  |-  A  e. 
_V
dfon2lem5.2  |-  B  e. 
_V
Assertion
Ref Expression
dfon2lem5  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem dfon2lem5
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfon2lem5.1 . . . 4  |-  A  e. 
_V
2 dfon2lem5.2 . . . 4  |-  B  e. 
_V
31, 2dfon2lem4 24213 . . 3  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( A  C_  B  \/  B  C_  A ) )
4 dfpss2 3274 . . . . . 6  |-  ( A 
C.  B  <->  ( A  C_  B  /\  -.  A  =  B ) )
5 dfpss2 3274 . . . . . . 7  |-  ( B 
C.  A  <->  ( B  C_  A  /\  -.  B  =  A ) )
6 eqcom 2298 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
76notbii 287 . . . . . . . 8  |-  ( -.  B  =  A  <->  -.  A  =  B )
87anbi2i 675 . . . . . . 7  |-  ( ( B  C_  A  /\  -.  B  =  A
)  <->  ( B  C_  A  /\  -.  A  =  B ) )
95, 8bitri 240 . . . . . 6  |-  ( B 
C.  A  <->  ( B  C_  A  /\  -.  A  =  B ) )
104, 9orbi12i 507 . . . . 5  |-  ( ( A  C.  B  \/  B  C.  A )  <->  ( ( A  C_  B  /\  -.  A  =  B )  \/  ( B  C_  A  /\  -.  A  =  B ) ) )
11 andir 838 . . . . 5  |-  ( ( ( A  C_  B  \/  B  C_  A )  /\  -.  A  =  B )  <->  ( ( A  C_  B  /\  -.  A  =  B )  \/  ( B  C_  A  /\  -.  A  =  B ) ) )
1210, 11bitr4i 243 . . . 4  |-  ( ( A  C.  B  \/  B  C.  A )  <->  ( ( A  C_  B  \/  B  C_  A )  /\  -.  A  =  B )
)
13 orcom 376 . . . . 5  |-  ( ( A  C.  B  \/  B  C.  A )  <->  ( B  C.  A  \/  A  C.  B ) )
14 dfon2lem3 24212 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B )  ->  ( Tr  B  /\  A. z  e.  B  -.  z  e.  z ) ) )
152, 14ax-mp 8 . . . . . . . 8  |-  ( A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B )  ->  ( Tr  B  /\  A. z  e.  B  -.  z  e.  z ) )
1615simpld 445 . . . . . . 7  |-  ( A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B )  ->  Tr  B )
17 psseq1 3276 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
x  C.  A  <->  B  C.  A ) )
18 treq 4135 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( Tr  x  <->  Tr  B )
)
1917, 18anbi12d 691 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( x  C.  A  /\  Tr  x )  <->  ( B  C.  A  /\  Tr  B
) ) )
20 eleq1 2356 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
2119, 20imbi12d 311 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( ( x  C.  A  /\  Tr  x )  ->  x  e.  A
)  <->  ( ( B 
C.  A  /\  Tr  B )  ->  B  e.  A ) ) )
222, 21spcv 2887 . . . . . . . . 9  |-  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  (
( B  C.  A  /\  Tr  B )  ->  B  e.  A )
)
2322exp3acom23 1362 . . . . . . . 8  |-  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  ( Tr  B  ->  ( B 
C.  A  ->  B  e.  A ) ) )
2423imp 418 . . . . . . 7  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  Tr  B )  ->  ( B  C.  A  ->  B  e.  A ) )
2516, 24sylan2 460 . . . . . 6  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( B  C.  A  ->  B  e.  A ) )
26 dfon2lem3 24212 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z ) ) )
271, 26ax-mp 8 . . . . . . . 8  |-  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z ) )
2827simpld 445 . . . . . . 7  |-  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  Tr  A )
29 psseq1 3276 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  C.  B  <->  A  C.  B ) )
30 treq 4135 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( Tr  y  <->  Tr  A )
)
3129, 30anbi12d 691 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  C.  B  /\  Tr  y )  <->  ( A  C.  B  /\  Tr  A
) ) )
32 eleq1 2356 . . . . . . . . . 10  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
3331, 32imbi12d 311 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( y  C.  B  /\  Tr  y )  ->  y  e.  B
)  <->  ( ( A 
C.  B  /\  Tr  A )  ->  A  e.  B ) ) )
341, 33spcv 2887 . . . . . . . 8  |-  ( A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B )  ->  (
( A  C.  B  /\  Tr  A )  ->  A  e.  B )
)
3534exp3acom23 1362 . . . . . . 7  |-  ( A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B )  ->  ( Tr  A  ->  ( A 
C.  B  ->  A  e.  B ) ) )
3628, 35mpan9 455 . . . . . 6  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( A  C.  B  ->  A  e.  B ) )
3725, 36orim12d 811 . . . . 5  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( ( B  C.  A  \/  A  C.  B )  ->  ( B  e.  A  \/  A  e.  B )
) )
3813, 37syl5bi 208 . . . 4  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( ( A  C.  B  \/  B  C.  A )  ->  ( B  e.  A  \/  A  e.  B )
) )
3912, 38syl5bir 209 . . 3  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( ( ( A 
C_  B  \/  B  C_  A )  /\  -.  A  =  B )  ->  ( B  e.  A  \/  A  e.  B
) ) )
403, 39mpand 656 . 2  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( -.  A  =  B  ->  ( B  e.  A  \/  A  e.  B ) ) )
41 3orrot 940 . . 3  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( A  =  B  \/  B  e.  A  \/  A  e.  B )
)
42 3orass 937 . . . 4  |-  ( ( A  =  B  \/  B  e.  A  \/  A  e.  B )  <->  ( A  =  B  \/  ( B  e.  A  \/  A  e.  B
) ) )
43 df-or 359 . . . 4  |-  ( ( A  =  B  \/  ( B  e.  A  \/  A  e.  B
) )  <->  ( -.  A  =  B  ->  ( B  e.  A  \/  A  e.  B )
) )
4442, 43bitri 240 . . 3  |-  ( ( A  =  B  \/  B  e.  A  \/  A  e.  B )  <->  ( -.  A  =  B  ->  ( B  e.  A  \/  A  e.  B ) ) )
4541, 44bitri 240 . 2  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( -.  A  =  B  ->  ( B  e.  A  \/  A  e.  B ) ) )
4640, 45sylibr 203 1  |-  ( ( A. x ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  /\  A. y ( ( y 
C.  B  /\  Tr  y )  ->  y  e.  B ) )  -> 
( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    \/ w3o 933   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165    C. wpss 3166   Tr wtr 4129
This theorem is referenced by:  dfon2lem6  24215  dfon2  24219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-pw 3640  df-sn 3659  df-pr 3660  df-uni 3844  df-iun 3923  df-tr 4130  df-suc 4414
  Copyright terms: Public domain W3C validator