Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Structured version   Unicode version

Theorem dfon2lem9 25420
Description: Lemma for dfon2 25421. A class of new ordinals is well-founded by  _E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  Fr  A )
Distinct variable group:    x, A, y

Proof of Theorem dfon2lem9
Dummy variables  z  w  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3409 . . . . 5  |-  ( z 
C_  A  ->  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. x  e.  z  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) ) )
2 dfon2lem8 25419 . . . . . . . 8  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z )  /\  |^| z  e.  z )
)
32simprd 451 . . . . . . 7  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  |^| z  e.  z
)
4 intss1 4067 . . . . . . . . 9  |-  ( t  e.  z  ->  |^| z  C_  t )
52simpld 447 . . . . . . . . . 10  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  A. u ( ( u 
C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )
6 intex 4358 . . . . . . . . . . 11  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
7 dfon2lem3 25414 . . . . . . . . . . . . . . . . 17  |-  ( |^| z  e.  _V  ->  ( A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z )  ->  ( Tr  |^| z  /\  A. x  e. 
|^| z  -.  x  e.  x ) ) )
87imp 420 . . . . . . . . . . . . . . . 16  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( Tr  |^| z  /\  A. x  e.  |^| z  -.  x  e.  x ) )
98simprd 451 . . . . . . . . . . . . . . 15  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  A. x  e.  |^| z  -.  x  e.  x )
10 untelirr 25159 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  |^| z  -.  x  e.  x  ->  -.  |^| z  e.  |^| z )
119, 10syl 16 . . . . . . . . . . . . . 14  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  -.  |^| z  e.  |^| z )
12 eleq1 2498 . . . . . . . . . . . . . . 15  |-  ( |^| z  =  t  ->  (
|^| z  e.  |^| z 
<->  t  e.  |^| z
) )
1312notbid 287 . . . . . . . . . . . . . 14  |-  ( |^| z  =  t  ->  ( -.  |^| z  e.  |^| z 
<->  -.  t  e.  |^| z ) )
1411, 13syl5ibcom 213 . . . . . . . . . . . . 13  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  =  t  ->  -.  t  e.  |^| z
) )
1514a1dd 45 . . . . . . . . . . . 12  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  =  t  ->  (
|^| z  C_  t  ->  -.  t  e.  |^| z ) ) )
168simpld 447 . . . . . . . . . . . . . . . . 17  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  Tr  |^| z
)
17 trss 4313 . . . . . . . . . . . . . . . . 17  |-  ( Tr 
|^| z  ->  (
t  e.  |^| z  ->  t  C_  |^| z ) )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( t  e.  |^| z  ->  t  C_ 
|^| z ) )
19 eqss 3365 . . . . . . . . . . . . . . . . 17  |-  ( |^| z  =  t  <->  ( |^| z  C_  t  /\  t  C_ 
|^| z ) )
2019simplbi2com 1384 . . . . . . . . . . . . . . . 16  |-  ( t 
C_  |^| z  ->  ( |^| z  C_  t  ->  |^| z  =  t
) )
2118, 20syl6 32 . . . . . . . . . . . . . . 15  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( t  e.  |^| z  ->  ( |^| z  C_  t  ->  |^| z  =  t
) ) )
2221com23 75 . . . . . . . . . . . . . 14  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  (
t  e.  |^| z  ->  |^| z  =  t ) ) )
23 con3 129 . . . . . . . . . . . . . 14  |-  ( ( t  e.  |^| z  ->  |^| z  =  t )  ->  ( -.  |^| z  =  t  ->  -.  t  e.  |^| z
) )
2422, 23syl6 32 . . . . . . . . . . . . 13  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  ( -.  |^| z  =  t  ->  -.  t  e.  |^| z ) ) )
2524com23 75 . . . . . . . . . . . 12  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( -.  |^| z  =  t  -> 
( |^| z  C_  t  ->  -.  t  e.  |^| z ) ) )
2615, 25pm2.61d 153 . . . . . . . . . . 11  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
276, 26sylanb 460 . . . . . . . . . 10  |-  ( ( z  =/=  (/)  /\  A. u ( ( u 
C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
285, 27syldan 458 . . . . . . . . 9  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
294, 28syl5 31 . . . . . . . 8  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( t  e.  z  ->  -.  t  e.  |^| z ) )
3029ralrimiv 2790 . . . . . . 7  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  A. t  e.  z  -.  t  e.  |^| z
)
31 eleq2 2499 . . . . . . . . . 10  |-  ( w  =  |^| z  -> 
( t  e.  w  <->  t  e.  |^| z ) )
3231notbid 287 . . . . . . . . 9  |-  ( w  =  |^| z  -> 
( -.  t  e.  w  <->  -.  t  e.  |^| z ) )
3332ralbidv 2727 . . . . . . . 8  |-  ( w  =  |^| z  -> 
( A. t  e.  z  -.  t  e.  w  <->  A. t  e.  z  -.  t  e.  |^| z ) )
3433rspcev 3054 . . . . . . 7  |-  ( (
|^| z  e.  z  /\  A. t  e.  z  -.  t  e. 
|^| z )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
)
353, 30, 34syl2anc 644 . . . . . 6  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
)
3635expcom 426 . . . . 5  |-  ( A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
z  =/=  (/)  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) )
371, 36syl6com 34 . . . 4  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
z  C_  A  ->  ( z  =/=  (/)  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) ) )
3837imp3a 422 . . 3  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
3938alrimiv 1642 . 2  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
40 df-fr 4543 . . 3  |-  (  _E  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w
) )
41 epel 4499 . . . . . . . 8  |-  ( t  _E  w  <->  t  e.  w )
4241notbii 289 . . . . . . 7  |-  ( -.  t  _E  w  <->  -.  t  e.  w )
4342ralbii 2731 . . . . . 6  |-  ( A. t  e.  z  -.  t  _E  w  <->  A. t  e.  z  -.  t  e.  w )
4443rexbii 2732 . . . . 5  |-  ( E. w  e.  z  A. t  e.  z  -.  t  _E  w  <->  E. w  e.  z  A. t  e.  z  -.  t  e.  w )
4544imbi2i 305 . . . 4  |-  ( ( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w
)  <->  ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) )
4645albii 1576 . . 3  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w )  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
4740, 46bitri 242 . 2  |-  (  _E  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
4839, 47sylibr 205 1  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  Fr  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322    C. wpss 3323   (/)c0 3630   |^|cint 4052   class class class wbr 4214   Tr wtr 4304    _E cep 4494    Fr wfr 4540
This theorem is referenced by:  dfon2  25421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-fr 4543  df-suc 4589
  Copyright terms: Public domain W3C validator