Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Unicode version

Theorem dfon3 25654
Description: A quantifier-free definition of  On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3  |-  On  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )

Proof of Theorem dfon3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 25370 . 2  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
2 abeq1 2518 . . 3  |-  ( { x  |  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) }  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )  <->  A. x
( A. y ( ( y  C.  x  /\  Tr  y )  -> 
y  e.  x )  <-> 
x  e.  ( _V 
\  ran  ( ( SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) ) ) )
3 vex 2927 . . . . . . 7  |-  x  e. 
_V
43elrn 5077 . . . . . 6  |-  ( x  e.  ran  ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )  <->  E. y  y (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) x )
5 brin 4227 . . . . . . . . . . 11  |-  ( y ( SSet  i^i  ( Trans  X.  _V ) ) x  <->  ( y SSet
x  /\  y ( Trans  X.  _V ) x ) )
63brsset 25651 . . . . . . . . . . . 12  |-  ( y
SSet x  <->  y  C_  x
)
7 brxp 4876 . . . . . . . . . . . . . 14  |-  ( y ( Trans  X.  _V )
x  <->  ( y  e. 
Trans  /\  x  e.  _V ) )
83, 7mpbiran2 886 . . . . . . . . . . . . 13  |-  ( y ( Trans  X.  _V )
x  <->  y  e.  Trans )
9 vex 2927 . . . . . . . . . . . . . 14  |-  y  e. 
_V
109eltrans 25653 . . . . . . . . . . . . 13  |-  ( y  e.  Trans 
<->  Tr  y )
118, 10bitri 241 . . . . . . . . . . . 12  |-  ( y ( Trans  X.  _V )
x  <->  Tr  y )
126, 11anbi12i 679 . . . . . . . . . . 11  |-  ( ( y SSet x  /\  y ( Trans  X.  _V ) x )  <->  ( y  C_  x  /\  Tr  y
) )
135, 12bitri 241 . . . . . . . . . 10  |-  ( y ( SSet  i^i  ( Trans  X.  _V ) ) x  <->  ( y  C_  x  /\  Tr  y ) )
14 ioran 477 . . . . . . . . . . 11  |-  ( -.  ( y  =  x  \/  y  e.  x
)  <->  ( -.  y  =  x  /\  -.  y  e.  x ) )
15 brun 4226 . . . . . . . . . . . 12  |-  ( y (  _I  u.  _E  ) x  <->  ( y  _I  x  \/  y  _E  x ) )
163ideq 4992 . . . . . . . . . . . . 13  |-  ( y  _I  x  <->  y  =  x )
17 epel 4465 . . . . . . . . . . . . 13  |-  ( y  _E  x  <->  y  e.  x )
1816, 17orbi12i 508 . . . . . . . . . . . 12  |-  ( ( y  _I  x  \/  y  _E  x )  <-> 
( y  =  x  \/  y  e.  x
) )
1915, 18bitri 241 . . . . . . . . . . 11  |-  ( y (  _I  u.  _E  ) x  <->  ( y  =  x  \/  y  e.  x ) )
2014, 19xchnxbir 301 . . . . . . . . . 10  |-  ( -.  y (  _I  u.  _E  ) x  <->  ( -.  y  =  x  /\  -.  y  e.  x
) )
2113, 20anbi12i 679 . . . . . . . . 9  |-  ( ( y ( SSet  i^i  ( Trans  X.  _V )
) x  /\  -.  y (  _I  u.  _E  ) x )  <->  ( (
y  C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x
) ) )
22 brdif 4228 . . . . . . . . 9  |-  ( y ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) x  <-> 
( y ( SSet 
i^i  ( Trans  X.  _V ) ) x  /\  -.  y (  _I  u.  _E  ) x ) )
23 dfpss2 3400 . . . . . . . . . . . . 13  |-  ( y 
C.  x  <->  ( y  C_  x  /\  -.  y  =  x ) )
2423anbi1i 677 . . . . . . . . . . . 12  |-  ( ( y  C.  x  /\  Tr  y )  <->  ( (
y  C_  x  /\  -.  y  =  x
)  /\  Tr  y
) )
25 an32 774 . . . . . . . . . . . 12  |-  ( ( ( y  C_  x  /\  -.  y  =  x )  /\  Tr  y
)  <->  ( ( y 
C_  x  /\  Tr  y )  /\  -.  y  =  x )
)
2624, 25bitri 241 . . . . . . . . . . 11  |-  ( ( y  C.  x  /\  Tr  y )  <->  ( (
y  C_  x  /\  Tr  y )  /\  -.  y  =  x )
)
2726anbi1i 677 . . . . . . . . . 10  |-  ( ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x
)  <->  ( ( ( y  C_  x  /\  Tr  y )  /\  -.  y  =  x )  /\  -.  y  e.  x
) )
28 anass 631 . . . . . . . . . 10  |-  ( ( ( ( y  C_  x  /\  Tr  y )  /\  -.  y  =  x )  /\  -.  y  e.  x )  <->  ( ( y  C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x ) ) )
2927, 28bitri 241 . . . . . . . . 9  |-  ( ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x
)  <->  ( ( y 
C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x
) ) )
3021, 22, 293bitr4i 269 . . . . . . . 8  |-  ( y ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) x  <-> 
( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x ) )
3130exbii 1589 . . . . . . 7  |-  ( E. y  y ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) x  <->  E. y ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x )
)
32 exanali 1592 . . . . . . 7  |-  ( E. y ( ( y 
C.  x  /\  Tr  y )  /\  -.  y  e.  x )  <->  -. 
A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
3331, 32bitri 241 . . . . . 6  |-  ( E. y  y ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) x  <->  -.  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) )
344, 33bitri 241 . . . . 5  |-  ( x  e.  ran  ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )  <->  -.  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
3534con2bii 323 . . . 4  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  <->  -.  x  e.  ran  ( ( SSet 
i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) )
36 eldif 3298 . . . . 5  |-  ( x  e.  ( _V  \  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )  <-> 
( x  e.  _V  /\ 
-.  x  e.  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) ) )
373, 36mpbiran 885 . . . 4  |-  ( x  e.  ( _V  \  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )  <->  -.  x  e.  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )
3835, 37bitr4i 244 . . 3  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  <->  x  e.  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) ) )
392, 38mpgbir 1556 . 2  |-  { x  |  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) }  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )
401, 39eqtri 2432 1  |-  On  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2398   _Vcvv 2924    \ cdif 3285    u. cun 3286    i^i cin 3287    C_ wss 3288    C. wpss 3289   class class class wbr 4180   Tr wtr 4270    _E cep 4460    _I cid 4461   Oncon0 4549    X. cxp 4843   ran crn 4846   SSetcsset 25597   Transctrans 25598
This theorem is referenced by:  dfon4  25655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-suc 4555  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-fo 5427  df-fv 5429  df-1st 6316  df-2nd 6317  df-txp 25617  df-sset 25619  df-trans 25620
  Copyright terms: Public domain W3C validator