Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Unicode version

Theorem dfon3 24432
Description: A quantifier-free definition of  On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3  |-  On  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )

Proof of Theorem dfon3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 24148 . 2  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
2 abeq1 2389 . . 3  |-  ( { x  |  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) }  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )  <->  A. x
( A. y ( ( y  C.  x  /\  Tr  y )  -> 
y  e.  x )  <-> 
x  e.  ( _V 
\  ran  ( ( SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) ) ) )
3 vex 2791 . . . . . . 7  |-  x  e. 
_V
43elrn 4919 . . . . . 6  |-  ( x  e.  ran  ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )  <->  E. y  y (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) x )
5 brin 4070 . . . . . . . . . . 11  |-  ( y ( SSet  i^i  ( Trans  X.  _V ) ) x  <->  ( y SSet
x  /\  y ( Trans  X.  _V ) x ) )
63brsset 24429 . . . . . . . . . . . 12  |-  ( y
SSet x  <->  y  C_  x
)
7 brxp 4720 . . . . . . . . . . . . . 14  |-  ( y ( Trans  X.  _V )
x  <->  ( y  e. 
Trans  /\  x  e.  _V ) )
83, 7mpbiran2 885 . . . . . . . . . . . . 13  |-  ( y ( Trans  X.  _V )
x  <->  y  e.  Trans )
9 vex 2791 . . . . . . . . . . . . . 14  |-  y  e. 
_V
109eltrans 24431 . . . . . . . . . . . . 13  |-  ( y  e.  Trans 
<->  Tr  y )
118, 10bitri 240 . . . . . . . . . . . 12  |-  ( y ( Trans  X.  _V )
x  <->  Tr  y )
126, 11anbi12i 678 . . . . . . . . . . 11  |-  ( ( y SSet x  /\  y ( Trans  X.  _V ) x )  <->  ( y  C_  x  /\  Tr  y
) )
135, 12bitri 240 . . . . . . . . . 10  |-  ( y ( SSet  i^i  ( Trans  X.  _V ) ) x  <->  ( y  C_  x  /\  Tr  y ) )
14 ioran 476 . . . . . . . . . . 11  |-  ( -.  ( y  =  x  \/  y  e.  x
)  <->  ( -.  y  =  x  /\  -.  y  e.  x ) )
15 brun 4069 . . . . . . . . . . . 12  |-  ( y (  _I  u.  _E  ) x  <->  ( y  _I  x  \/  y  _E  x ) )
163ideq 4836 . . . . . . . . . . . . 13  |-  ( y  _I  x  <->  y  =  x )
17 epel 4308 . . . . . . . . . . . . 13  |-  ( y  _E  x  <->  y  e.  x )
1816, 17orbi12i 507 . . . . . . . . . . . 12  |-  ( ( y  _I  x  \/  y  _E  x )  <-> 
( y  =  x  \/  y  e.  x
) )
1915, 18bitri 240 . . . . . . . . . . 11  |-  ( y (  _I  u.  _E  ) x  <->  ( y  =  x  \/  y  e.  x ) )
2014, 19xchnxbir 300 . . . . . . . . . 10  |-  ( -.  y (  _I  u.  _E  ) x  <->  ( -.  y  =  x  /\  -.  y  e.  x
) )
2113, 20anbi12i 678 . . . . . . . . 9  |-  ( ( y ( SSet  i^i  ( Trans  X.  _V )
) x  /\  -.  y (  _I  u.  _E  ) x )  <->  ( (
y  C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x
) ) )
22 brdif 4071 . . . . . . . . 9  |-  ( y ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) x  <-> 
( y ( SSet 
i^i  ( Trans  X.  _V ) ) x  /\  -.  y (  _I  u.  _E  ) x ) )
23 dfpss2 3261 . . . . . . . . . . . . 13  |-  ( y 
C.  x  <->  ( y  C_  x  /\  -.  y  =  x ) )
2423anbi1i 676 . . . . . . . . . . . 12  |-  ( ( y  C.  x  /\  Tr  y )  <->  ( (
y  C_  x  /\  -.  y  =  x
)  /\  Tr  y
) )
25 an32 773 . . . . . . . . . . . 12  |-  ( ( ( y  C_  x  /\  -.  y  =  x )  /\  Tr  y
)  <->  ( ( y 
C_  x  /\  Tr  y )  /\  -.  y  =  x )
)
2624, 25bitri 240 . . . . . . . . . . 11  |-  ( ( y  C.  x  /\  Tr  y )  <->  ( (
y  C_  x  /\  Tr  y )  /\  -.  y  =  x )
)
2726anbi1i 676 . . . . . . . . . 10  |-  ( ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x
)  <->  ( ( ( y  C_  x  /\  Tr  y )  /\  -.  y  =  x )  /\  -.  y  e.  x
) )
28 anass 630 . . . . . . . . . 10  |-  ( ( ( ( y  C_  x  /\  Tr  y )  /\  -.  y  =  x )  /\  -.  y  e.  x )  <->  ( ( y  C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x ) ) )
2927, 28bitri 240 . . . . . . . . 9  |-  ( ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x
)  <->  ( ( y 
C_  x  /\  Tr  y )  /\  ( -.  y  =  x  /\  -.  y  e.  x
) ) )
3021, 22, 293bitr4i 268 . . . . . . . 8  |-  ( y ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) x  <-> 
( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x ) )
3130exbii 1569 . . . . . . 7  |-  ( E. y  y ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) x  <->  E. y ( ( y  C.  x  /\  Tr  y )  /\  -.  y  e.  x )
)
32 exanali 1572 . . . . . . 7  |-  ( E. y ( ( y 
C.  x  /\  Tr  y )  /\  -.  y  e.  x )  <->  -. 
A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
3331, 32bitri 240 . . . . . 6  |-  ( E. y  y ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) x  <->  -.  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) )
344, 33bitri 240 . . . . 5  |-  ( x  e.  ran  ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )  <->  -.  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
3534con2bii 322 . . . 4  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  <->  -.  x  e.  ran  ( ( SSet 
i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) )
36 eldif 3162 . . . . 5  |-  ( x  e.  ( _V  \  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )  <-> 
( x  e.  _V  /\ 
-.  x  e.  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) ) )
373, 36mpbiran 884 . . . 4  |-  ( x  e.  ( _V  \  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )  <->  -.  x  e.  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) ) )
3835, 37bitr4i 243 . . 3  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  <->  x  e.  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) ) )
392, 38mpgbir 1537 . 2  |-  { x  |  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) }  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )
401, 39eqtri 2303 1  |-  On  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152    C. wpss 3153   class class class wbr 4023   Tr wtr 4113    _E cep 4303    _I cid 4304   Oncon0 4392    X. cxp 4687   ran crn 4690   SSetcsset 24375   Transctrans 24376
This theorem is referenced by:  dfon4  24433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6122  df-2nd 6123  df-txp 24395  df-sset 24397  df-trans 24398
  Copyright terms: Public domain W3C validator