Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfop Structured version   Unicode version

Theorem dfop 3975
 Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1
dfop.2
Assertion
Ref Expression
dfop

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2
2 dfop.2 . 2
3 dfopg 3974 . 2
41, 2, 3mp2an 654 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  cvv 2948  csn 3806  cpr 3807  cop 3809 This theorem is referenced by:  opid  3994  elop  4421  opi1  4422  opi2  4423  opeqsn  4444  opeqpr  4445  uniop  4451  op1stb  4750  xpsspw  4978  xpsspwOLD  4979  relop  5015  funopg  5477 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-dif 3315  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-op 3815
 Copyright terms: Public domain W3C validator